亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

神經網絡初學者的激活函數指南

Dbwd_Imgtec ? 來源:未知 ? 2023-04-18 11:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者:Mouaad B.

來源:DeepHub IMBA


如果你剛剛開始學習神經網絡,激活函數的原理一開始可能很難理解。但是如果你想開發(fā)強大的神經網絡,理解它們是很重要的。

ac8abe46-dd97-11ed-bfe3-dac502259ad0.png

但在我們深入研究激活函數之前,先快速回顧一下神經網絡架構的基本元素。如果你已經熟悉神經網絡的工作原理,可以直接跳到下一節(jié)。

神經網絡架構

神經網絡由稱為神經元的鏈接節(jié)點層組成,神經元通過稱為突觸的加權連接來處理和傳輸信息。

ac9a3042-dd97-11ed-bfe3-dac502259ad0.png

每個神經元從上一層的神經元獲取輸入,對其輸入的和應用激活函數,然后將輸出傳遞給下一層。

神經網絡的神經元包含輸入層、隱藏層和輸出層。

輸入層只接收來自域的原始數據。這里沒有計算,節(jié)點只是簡單地將信息(也稱為特征)傳遞給下一層,即隱藏層。隱藏層是所有計算發(fā)生的地方。它從輸入層獲取特征,并在將結果傳遞給輸出層之前對它們進行各種計算。輸出層是網絡的最后一層。它使用從隱藏層獲得的所有信息并產生最終值。

為什么需要激活函數。為什么神經元不能直接計算并將結果轉移到下一個神經元?激活函數的意義是什么?

激活函數在神經網絡中的作用

網絡中的每個神經元接收來自其他神經元的輸入,然后它對輸入進行一些數學運算以生成輸出。一個神經元的輸出可以被用作網絡中其他神經元的輸入。

acb4189a-dd97-11ed-bfe3-dac502259ad0.png

如果沒有激活函數,神經元將只是對輸入進行線性數學運算。這意味著無論我們在網絡中添加多少層神經元,它所能學習的東西仍然是有限的,因為輸出總是輸入的簡單線性組合。

激活函數通過在網絡中引入非線性來解決問題。通過添加非線性,網絡可以模擬輸入和輸出之間更復雜的關系,從而發(fā)現更多有價值的模式。

簡而言之,激活函數通過引入非線性并允許神經網絡學習復雜的模式,使神經網絡更加強大。

理解不同類型的激活函數

我們可以將這些函數分為三部分:二元、線性和非線性。

acc53db4-dd97-11ed-bfe3-dac502259ad0.png

二元函數只能輸出兩個可能值中的一個,而線性函數則返回基于線性方程的值。

非線性函數,如sigmoid函數,Tanh, ReLU和elu,提供的結果與輸入不成比例。每種類型的激活函數都有其獨特的特征,可以在不同的場景中使用。
1、Sigmoid / Logistic激活函數

Sigmoid激活函數接受任何數字作為輸入,并給出0到1之間的輸出。輸入越正,輸出越接近1。另一方面,輸入越負,輸出就越接近0,如下圖所示。

acd85494-dd97-11ed-bfe3-dac502259ad0.png

它具有s形曲線,使其成為二元分類問題的理想選擇。如果要創(chuàng)建一個模型來預測一封電子郵件是否為垃圾郵件,我們可以使用Sigmoid函數來提供一個0到1之間的概率分數。如果得分超過0.5分,則認為該郵件是垃圾郵件。如果它小于0.5,那么我們可以說它不是垃圾郵件。

函數定義如下:

acebc204-dd97-11ed-bfe3-dac502259ad0.png

但是Sigmoid函數有一個缺點——它受到梯度消失問題的困擾。當輸入變得越來越大或越來越小時,函數的梯度變得非常小,減慢了深度神經網絡的學習過程,可以看上面圖中的導數(Derivative)曲線。

但是Sigmoid函數仍然在某些類型的神經網絡中使用,例如用于二進制分類問題的神經網絡,或者用于多類分類問題的輸出層,因為預測每個類的概率Sigmoid還是最好的解決辦法。
2、Tanh函數(雙曲正切)

Tanh函數,也被稱為雙曲正切函數,是神經網絡中使用的另一種激活函數。它接受任何實數作為輸入,并輸出一個介于-1到1之間的值。

acff2ccc-dd97-11ed-bfe3-dac502259ad0.png

Tanh函數和Sigmoid函數很相似,但它更以0為中心。當輸入接近于零時,輸出也將接近于零。這在處理同時具有負值和正值的數據時非常有用,因為它可以幫助網絡更好地學習。

函數定義如下:

ad12834e-dd97-11ed-bfe3-dac502259ad0.png

與Sigmoid函數一樣,Tanh函數也會在輸入變得非常大或非常小時遭遇梯度消失的問題。
3、線性整流單元/ ReLU函數

ReLU是一種常見的激活函數,它既簡單又強大。它接受任何輸入值,如果為正則返回,如果為負則返回0。換句話說,ReLU將所有負值設置為0,并保留所有正值。

ad24411a-dd97-11ed-bfe3-dac502259ad0.png

函數定義如下:

ad47b974-dd97-11ed-bfe3-dac502259ad0.png

使用ReLU的好處之一是計算效率高,并且實現簡單。它可以幫助緩解深度神經網絡中可能出現的梯度消失問題。

但是,ReLU可能會遇到一個被稱為“dying ReLU”問題。當神經元的輸入為負,導致神經元的輸出為0時,就會發(fā)生這種情況。如果這種情況發(fā)生得太頻繁,神經元就會“死亡”并停止學習。
4、Leaky ReLU

Leaky ReLU函數是ReLU函數的一個擴展,它試圖解決“dying ReLU”問題。Leaky ReLU不是將所有的負值都設置為0,而是將它們設置為一個小的正值,比如輸入值的0.1倍。他保證即使神經元接收到負信息,它仍然可以從中學習。

ad5b4804-dd97-11ed-bfe3-dac502259ad0.png

函數定義如下:

ad7e9480-dd97-11ed-bfe3-dac502259ad0.png

Leaky ReLU已被證明在許多不同類型的問題中工作良好。
5、指數線性單位(elu)函數

ReLU一樣,他們的目標是解決梯度消失的問題。elu引入了負輸入的非零斜率,這有助于防止“dying ReLU”問題

ad8ebd2e-dd97-11ed-bfe3-dac502259ad0.png

公式為:

ada1702c-dd97-11ed-bfe3-dac502259ad0.png

這里的alpha是控制負飽和度的超參數。

與ReLU和tanh等其他激活函數相比,elu已被證明可以提高訓練和測試的準確性。它在需要高準確度的深度神經網絡中特別有用。
6、Softmax函數

在需要對輸入進行多類別分類的神經網絡中,softmax函數通常用作輸出層的激活函數。它以一個實數向量作為輸入,并返回一個表示每個類別可能性的概率分布。

softmax的公式是:

adb67666-dd97-11ed-bfe3-dac502259ad0.png

這里的x是輸入向量,i和j是從1到類別數的索引。

Softmax對于多類分類問題非常有用,因為它確保輸出概率之和為1,從而便于解釋結果。它也是可微的,這使得它可以在訓練過程中用于反向傳播。

7、Swish

Swish函數是一個相對較新的激活函數,由于其優(yōu)于ReLU等其他激活函數的性能,在深度學習社區(qū)中受到了關注。

Swish的公式是:

adc64622-dd97-11ed-bfe3-dac502259ad0.png

這里的beta是控制飽和度的超參數。

Swish類似于ReLU,因為它是一個可以有效計算的簡單函數。并且有一個平滑的曲線,有助于預防“dying ReLU”問題。Swish已被證明在各種深度學習任務上優(yōu)于ReLU。


選擇哪一種?

首先,需要將激活函數與你要解決的預測問題類型相匹配。可以從ReLU激活函數開始,如果沒有達到預期的結果,則可以轉向其他激活函數。

以下是一些需要原則:
  • ReLU激活函數只能在隱藏層中使用。
  • Sigmoid/Logistic和Tanh函數不應該用于隱藏層,因為它們會在訓練過程中引起問題。
  • Swish函數用于深度大于40層的神經網絡會好很多。

輸出層的激活函數是由你要解決的預測問題的類型決定的。以下是一些需要記住的基本原則:
  • 回歸-線性激活函數

  • 二元分類- Sigmoid

  • 多類分類- Softmax

  • 多標簽分類- Sigmoid
選擇正確的激活函數可以使預測準確性有所不同。所以還需要根據不同的使用情況進行測試。

END

推薦閱讀 對話Imagination中國區(qū)董事長:以GPU為支點加強軟硬件協(xié)同,助力數字化轉型合作案例 | Imagination車規(guī)級硬件虛擬化幫助Telechips提升顯示器的多樣性

Imagination Technologies是一家總部位于英國的公司,致力于研發(fā)芯片和軟件知識產權(IP),基于Imagination IP的產品已在全球數十億人的電話、汽車、家庭和工作 場所中使用。獲取更多物聯網、智能穿戴、通信、汽車電子、圖形圖像開發(fā)等前沿技術信息,歡迎關注 Imagination Tech!


原文標題:神經網絡初學者的激活函數指南

文章出處:【微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • imagination
    +關注

    關注

    1

    文章

    611

    瀏覽量

    63007

原文標題:神經網絡初學者的激活函數指南

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    激活函數ReLU的理解與總結

    激活函數的作用 神經網絡中使用激活函數來加入非線性因素,提高模型的表達能力。 如果不用激勵函數
    發(fā)表于 10-31 06:16

    NMSIS神經網絡庫使用介紹

    :   神經網絡卷積函數   神經網絡激活函數   全連接層函數   
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓練神經網絡模型的一些經驗

    , batch_size=512, epochs=20)總結 這個核心算法中的卷積神經網絡結構和訓練過程,是用來對MNIST手寫數字圖像進行分類的。模型將圖像作為輸入,通過卷積和池化層提取圖像的特征,然后通過全連接層進行分類預測。訓練過程中,模型通過最小化損失函數來優(yōu)化
    發(fā)表于 10-22 07:03

    基于神經網絡的數字預失真模型解決方案

    在基于神經網絡的數字預失真(DPD)模型中,使用不同的激活函數對整個系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?2855次閱讀

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發(fā)表于 02-12 15:53 ?1132次閱讀

    BP神經網絡的實現步驟詳解

    BP神經網絡的實現步驟主要包括以下幾個階段:網絡初始化、前向傳播、誤差計算、反向傳播和權重更新。以下是對這些步驟的詳細解釋: 一、網絡初始化 確定網絡結構 : 根據輸入和輸出數據的特性
    的頭像 發(fā)表于 02-12 15:50 ?1012次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1234次閱讀

    BP神經網絡的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負責接收外部輸入數據,這些數據隨后被傳遞到隱藏層。隱藏層是BP神經網絡的核心部分,它可以通過一層或多層神經元對輸入數據進行加權求和,并通過非線性激活函數
    的頭像 發(fā)表于 02-12 15:13 ?1389次閱讀

    如何訓練BP神經網絡模型

    BP(Back Propagation)神經網絡是一種經典的人工神經網絡模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP神經網絡模型的步驟: 一、前向傳播 前向傳播是信號在
    的頭像 發(fā)表于 02-12 15:10 ?1295次閱讀

    深度學習入門:簡單神經網絡的構建與實現

    神經網絡。 首先,導入必要的庫: 收起 python ? import numpy as np ? 定義激活函數 Sigmoid: 收起 python ? def sigmoid(x): return 1
    的頭像 發(fā)表于 01-23 13:52 ?741次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1941次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    EE-269:以太網802.3初學者指南

    電子發(fā)燒友網站提供《EE-269:以太網802.3初學者指南.pdf》資料免費下載
    發(fā)表于 01-05 09:48 ?1次下載
    EE-269:以太網802.3<b class='flag-5'>初學者</b><b class='flag-5'>指南</b>

    一文詳解物理信息神經網絡

    物理信息神經網絡 (PINN) 是一種神經網絡,它將微分方程描述的物理定律納入其損失函數中,以引導學習過程得出更符合基本物理定律的解。
    的頭像 發(fā)表于 12-05 16:50 ?1.3w次閱讀
    一文詳解物理信息<b class='flag-5'>神經網絡</b>

    卷積神經網絡與傳統(tǒng)神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統(tǒng)神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)神經網絡
    的頭像 發(fā)表于 11-15 14:53 ?2315次閱讀

    RNN模型與傳統(tǒng)神經網絡的區(qū)別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經網絡的類型也在不斷增加,其中循環(huán)神經網絡(RNN)和傳統(tǒng)神經網絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1857次閱讀