亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

中科院計(jì)算所提出圖神經(jīng)網(wǎng)絡(luò)加速芯片設(shè)計(jì)

電子工程師 ? 來源:FPGA設(shè)計(jì)論壇 ? 作者:FPGA設(shè)計(jì)論壇 ? 2020-12-28 09:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,《中國(guó)計(jì)算機(jī)學(xué)會(huì)通訊》刊發(fā)了中科院計(jì)算所特別研究助理嚴(yán)明玉博士、研究員范東睿以及研究員葉笑春共同撰寫的綜述文章《圖神經(jīng)網(wǎng)絡(luò)加速芯片:人工智能“認(rèn)知智能”階段起飛的推進(jìn)劑》。文章披露,該團(tuán)隊(duì)提出了國(guó)際首款圖神經(jīng)網(wǎng)絡(luò)加速芯片設(shè)計(jì)HyGCN。目前,介紹該芯片設(shè)計(jì)的相關(guān)論文已先后在計(jì)算機(jī)體系結(jié)構(gòu)國(guó)際頂級(jí)會(huì)議MICRO和HPCA上發(fā)表。

“HyGCN,寓意向圖神經(jīng)網(wǎng)絡(luò)的加速說‘Hi’。”嚴(yán)明玉介紹道,圖神經(jīng)網(wǎng)絡(luò)將深度學(xué)習(xí)算法和圖計(jì)算算法相融合,取長(zhǎng)補(bǔ)短,能達(dá)到更優(yōu)的認(rèn)知與問題處理等能力,在搜索、推薦、風(fēng)險(xiǎn)控制等重要領(lǐng)域有著廣泛應(yīng)用。現(xiàn)有的處理器芯片在執(zhí)行圖神經(jīng)網(wǎng)絡(luò)的計(jì)算中效率低下,其團(tuán)隊(duì)前瞻性地展開面向圖神經(jīng)網(wǎng)絡(luò)的加速芯片設(shè)計(jì),為解決這一難題提供了可行方案。

“圖神經(jīng)網(wǎng)絡(luò)加速芯片有望成為AI‘認(rèn)知智能’階段起飛的推進(jìn)劑。我們基于12nm工藝,對(duì)HyGCN的芯片設(shè)計(jì)的核心部件在主流的圖神經(jīng)網(wǎng)絡(luò)模型和圖測(cè)試數(shù)據(jù)集上進(jìn)行了初步的評(píng)估。”嚴(yán)明玉介紹說,相對(duì)于運(yùn)行在Intel至強(qiáng)服務(wù)器CPU英偉達(dá)V100GPU的先進(jìn)圖神經(jīng)網(wǎng)絡(luò)軟件框架,HyGCN分別取得了數(shù)萬倍和60余倍的能效提升。

未來有這些應(yīng)用空間

圖神經(jīng)網(wǎng)絡(luò)的潛在應(yīng)用非常多。嚴(yán)明玉舉例,在日常交通預(yù)測(cè)、網(wǎng)約車調(diào)度、金融詐騙偵查、運(yùn)動(dòng)檢測(cè)等場(chǎng)景,在助力科研的知識(shí)推理、EDA工程、化學(xué)研究、宇宙發(fā)現(xiàn)等領(lǐng)域,以及在知識(shí)圖譜、視覺推理、自然語言處理中的多跳推理等學(xué)科發(fā)展方向上,都有極大應(yīng)用空間。

在工業(yè)界,圖神經(jīng)網(wǎng)絡(luò)也已經(jīng)有了落地應(yīng)用。比如,谷歌地圖的ETA評(píng)估、圖片社交網(wǎng)站Pinterest的內(nèi)容推薦、阿里巴巴的風(fēng)控和推薦、騰訊等公司的視覺和風(fēng)控等業(yè)務(wù)中都有圖神經(jīng)網(wǎng)絡(luò)的影子。 由于圖神經(jīng)網(wǎng)絡(luò)具有推理能力,認(rèn)知智能還可以幫助機(jī)器跨越模態(tài)理解數(shù)據(jù),學(xué)習(xí)到接近人腦認(rèn)知的一般表達(dá),從而獲得類似于人腦的多模感知能力,進(jìn)而有望帶來顛覆性的產(chǎn)業(yè)價(jià)值。

原文標(biāo)題:中科院計(jì)算所研究團(tuán)隊(duì)提出圖神經(jīng)網(wǎng)絡(luò)加速芯片設(shè)計(jì)

文章出處:【微信公眾號(hào):FPGA設(shè)計(jì)論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    462

    文章

    53355

    瀏覽量

    456479
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4822

    瀏覽量

    106455
  • AI
    AI
    +關(guān)注

    關(guān)注

    89

    文章

    37531

    瀏覽量

    293244

原文標(biāo)題:中科院計(jì)算所研究團(tuán)隊(duì)提出圖神經(jīng)網(wǎng)絡(luò)加速芯片設(shè)計(jì)

文章出處:【微信號(hào):gh_9d70b445f494,微信公眾號(hào):FPGA設(shè)計(jì)論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x>0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x<0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    NMSIS NN 軟件庫(kù)是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫(kù)分為多個(gè)功能,每個(gè)功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重?cái)?shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲(chǔ)器內(nèi)。 在仿真環(huán)境下,可將其存于一個(gè)文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
    發(fā)表于 10-20 08:00

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    AI芯片不僅包括深度學(xué)細(xì)AI加速器,還有另外一個(gè)主要列別:類腦芯片。類腦芯片是模擬人腦神經(jīng)網(wǎng)絡(luò)架構(gòu)的芯片
    發(fā)表于 09-17 16:43

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算加速技術(shù)

    問題。因此,并行計(jì)算加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實(shí)際應(yīng)用中對(duì)快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。
    的頭像 發(fā)表于 09-17 13:31 ?820次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行<b class='flag-5'>計(jì)算</b>與<b class='flag-5'>加速</b>技術(shù)

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    摘要:針對(duì)傳統(tǒng)專家系統(tǒng)不能進(jìn)行自學(xué)習(xí)、自適應(yīng)的問題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機(jī)故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合,充分發(fā)揮了二者故障診斷的優(yōu)點(diǎn),很大程度上降低了對(duì)電機(jī)
    發(fā)表于 06-16 22:09

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計(jì)的人工智能微控制器技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78000是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
    的頭像 發(fā)表于 05-08 11:42 ?644次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>度計(jì)的人工智能微控制器技術(shù)手冊(cè)

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制器技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78002是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
    的頭像 發(fā)表于 05-08 10:16 ?518次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>器的人工智能微控制器技術(shù)手冊(cè)

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1149次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計(jì)算每層網(wǎng)絡(luò)的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?1156次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1250次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1960次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點(diǎn)是每一層的每個(gè)神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡(jiǎn)單直觀,但在
    的頭像 發(fā)表于 11-15 14:53 ?2326次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1868次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?2070次閱讀