亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

嵌入式芯片中神經(jīng)網(wǎng)絡(luò)加速器如何支持本地化AI處理

454398 ? 來源:ST社區(qū) ? 作者:ST社區(qū) ? 2022-12-20 18:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:ST社區(qū)

GPU和NNA(神經(jīng)網(wǎng)絡(luò)加速器)正在迅速成為AI應(yīng)用的關(guān)鍵要素。隨著不同企業(yè)開始挖掘神經(jīng)網(wǎng)絡(luò)在各種任務(wù)(比如自然語言處理、圖片分類)中的潛力,集成人工智能元素的產(chǎn)品數(shù)量正在穩(wěn)步的增長。與此同時,對于這些任務(wù)的處理也正在從傳統(tǒng)的云端架構(gòu)轉(zhuǎn)移到設(shè)備本身上來,嵌入式芯片中集成了專用的神經(jīng)網(wǎng)絡(luò)加速器,可支持本地化AI處理。例如先進(jìn)的駕駛輔助系統(tǒng)(ADAS)能夠?qū)崟r監(jiān)控前方道路,還有集成語音識別類功能的消費電子產(chǎn)品,比如虛擬助理?;谏窠?jīng)網(wǎng)絡(luò)的AI應(yīng)用正在多個細(xì)分市場不斷擴大。

Imagination公司的業(yè)務(wù)是為芯片設(shè)計提供必要的內(nèi)核組件,我們在嵌入式圖形處理器(GPU)和神經(jīng)網(wǎng)絡(luò)加速器(NNA)技術(shù)方面聞名,我們將這些技術(shù)授權(quán)給世界領(lǐng)先的芯片供應(yīng)商。他們的產(chǎn)品被廣泛應(yīng)用在多個產(chǎn)品和服務(wù)中,因此Imagination在市場上占有著獨特的位置,我們使得整個生態(tài)系統(tǒng)都能夠參與到AI的發(fā)展中來。

不可否認(rèn),AI在很多應(yīng)用中都是至關(guān)重要的,但是也有很多的挑戰(zhàn)。其中之一就是協(xié)調(diào)好終端設(shè)備和云服務(wù)器之間的處理負(fù)載,將AI處理操作放在最佳的位置來完成。例如在消費者終端設(shè)備上進(jìn)行本地化AI語音識別;對于“喚醒”指令或其他簡單指令,因為本地設(shè)備無法存儲龐大的知識數(shù)據(jù)庫,要利用這些數(shù)據(jù)就必須在云服務(wù)器中實現(xiàn)很大一部分AI處理操作。目前的情況是很多市場上銷售的產(chǎn)品都帶有AI功能,但實際上它們只是在本地進(jìn)行簡單的模式匹配和識別,然后依賴云服務(wù)器完成進(jìn)一步的AI處理。

這種情況將會逐漸改變,隨著芯片工藝技術(shù)變得更加普遍,嵌入式神經(jīng)網(wǎng)絡(luò)加速器(NNA)將會變得幾乎和CPU一樣無處不在,這為在終端設(shè)備中提高人工智能處理能力創(chuàng)造了機會。例如我們希望看到智能安防攝像頭能夠熟練的監(jiān)控特定事件,不再局限于簡單的錄像,使用終端設(shè)備AI功能來處理識別視野內(nèi)的一些特征,比如道路上的車輛或人群中的面孔。這也會衍生一些其他功能,比如確定車輛的制造商和型號、或者是某些人獲得授權(quán)。輸入結(jié)果可能不是可識別的視頻內(nèi)容,可能只是描述這些結(jié)果的原始數(shù)據(jù)。將人工智能嵌入到安防攝像頭中甚至可以減少不靠譜情況的發(fā)生從而降低成本,因為攝像頭內(nèi)的AI功能可以識別正常行為與可疑行為之間的區(qū)別。

雖然人工智能的應(yīng)用數(shù)量在不斷增加,但這并不意味著集成神經(jīng)網(wǎng)特性的單個SoC是所有應(yīng)用場景的發(fā)展方向。如果我們考慮讓人工智能涉及大部分細(xì)分市場,由于使用該技術(shù)的產(chǎn)品在加工要求上有很大的不同,自然會出現(xiàn)多樣化。分散的市場很難與通用的應(yīng)用處理器一起結(jié)合使用,例如那些集成了NNA器件和GPU的處理器,事實上,“一刀切”的方式并不總是適用的。

雖然一些市場為SoC供應(yīng)商提供了大量的機會,比如智能手機、汽車ADAS等,但是許多以使用AI為目標(biāo)的市場需求量并不是很大。值得注意的是,一些產(chǎn)品可能需要人工智能來進(jìn)行語音處理或圖像識別,但并非兩者都需要:智能照明系統(tǒng)供應(yīng)商不太可能使用最初為智能手機而設(shè)計的SoC,僅僅是為了將人工智能引入到其應(yīng)用中,這并不符合成本效益。解決這個問題的方法是創(chuàng)建專門的人工智能芯片,與主應(yīng)用處理器一起作為配套芯片使用,這些器件可以承擔(dān)原來由主應(yīng)用處理器上的NNA核心來處理的AI任務(wù),這具有明顯的優(yōu)勢:SoC供應(yīng)商可以提供一系列具有不同性能水平的終端AI器件;此外,OEM廠商還可以根據(jù)他們的期望在特定應(yīng)用中處理AI任務(wù),提供多個選項來適當(dāng)?shù)臄U展或縮減產(chǎn)品解決方案。

那么人工智能市場將走向何方?我預(yù)計人們對人工智能的興趣和需求都將繼續(xù)增長,事實上,支撐這一目標(biāo)的技術(shù)不斷變得成熟。相反,幾乎可以肯定的是,人們會意識到人工智能并不是解決所有問題的答案,炒作現(xiàn)象可能會有所減弱,許多公司也會轉(zhuǎn)移注意力。他們將會利用人工智能的潛力來增強系統(tǒng)的能力,但是人工智能未必是這些系統(tǒng)的運行核心。

更進(jìn)一步說,真正的人工智能——機器擁有意識,能夠基于認(rèn)知推理作出決策——這還需要10年或更長的時間。這意味著云互連在未來很多年都將至關(guān)重要,它不僅能提供必要的大規(guī)模并行計算資源(可能是通過量子機器),還能提供巨大的數(shù)據(jù)存儲,人工智能依靠這些數(shù)據(jù)來理解周圍的世界。更高帶寬的通信技術(shù)有望在2019年問世,尤其是5G和802.11ax標(biāo)準(zhǔn),因此相信云AI架構(gòu)和互連帶寬都將相應(yīng)擴大。

PowerVR Series2NX架構(gòu)

對于真正處于前沿的人工智能,我們需要構(gòu)想出創(chuàng)新的方法來提高晶體管在硅片上的封裝密度,同時使其既具有通過學(xué)習(xí)獲得知識的能力又具備所需的推理技能,從而設(shè)計全新的SoC器件。

Imagination公司希望為芯片供應(yīng)商提供關(guān)鍵的核心技術(shù),從而構(gòu)建世界領(lǐng)先的人工智能解決方案。PowerVR GPU提供了高性能的GPU計算能力,用于處理AI中的可視化操作,比如圖像識別和排序、手勢識別驅(qū)動接口以及實時視頻分析等。PowerVR NNA(神經(jīng)網(wǎng)絡(luò)加速器)是任何前沿人工智能解決方案的核心,為高級推理和邊緣數(shù)據(jù)處理提供必要的硬件加速。我們的GPU和NNA能夠為高性能的AI處理提供一切必要的技術(shù)并使硅芯片獲得優(yōu)勢。

人工智能的未來正在變得清晰…但是當(dāng)它完成某些任務(wù)花費的時間比我們預(yù)期的時間要長時大家不要感到驚訝。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    462

    文章

    53320

    瀏覽量

    456185
  • 嵌入式
    +關(guān)注

    關(guān)注

    5178

    文章

    20038

    瀏覽量

    326381
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    的數(shù)量級,而且生物軸突的延遲和神經(jīng)元的時間常數(shù)比數(shù)字電路的傳播和轉(zhuǎn)換延遲要大得多,AER 的工作方式和神經(jīng)網(wǎng)絡(luò)的特點相吻合,所以受生物啟發(fā)的神經(jīng)形態(tài)處理器中的NoC或SNN
    發(fā)表于 10-24 07:34

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重數(shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+神經(jīng)形態(tài)計算、類腦芯片

    AI芯片不僅包括深度學(xué)細(xì)AI加速器,還有另外一個主要列別:類腦芯片。類腦芯片是模擬人腦
    發(fā)表于 09-17 16:43

    神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)

    問題。因此,并行計算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實際應(yīng)用中對快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。
    的頭像 發(fā)表于 09-17 13:31 ?816次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計算與<b class='flag-5'>加速</b>技術(shù)

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+第二章 實現(xiàn)深度學(xué)習(xí)AI芯片的創(chuàng)新方法與架構(gòu)

    Transformer和視覺Transformer模型。 ViTA是一種高效數(shù)據(jù)流AI加速器,用于在邊緣設(shè)備上部署計算密集型視覺Transformer模型。 2、射頻神經(jīng)網(wǎng)絡(luò) 2.1線性射頻模擬
    發(fā)表于 09-12 17:30

    Andes晶心科技推出新一代深度學(xué)習(xí)加速器

    高效能、低功耗 32/64 位 RISC-V 處理器核與 AI 加速解決方案的領(lǐng)導(dǎo)供貨商—Andes晶心科技(Andes Technology)今日正式發(fā)表最新深度學(xué)習(xí)加速器 Ande
    的頭像 發(fā)表于 08-20 17:43 ?1619次閱讀

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計的人工智能微控制技術(shù)手冊

    的Maxim超低功耗微控制相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時功耗僅為微焦耳級。
    的頭像 發(fā)表于 05-08 11:42 ?636次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>度計的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制技術(shù)手冊

    的Maxim超低功耗微控制相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時功耗僅為微焦耳級。
    的頭像 發(fā)表于 05-08 10:16 ?507次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊

    ETAS全新的嵌入式AI解決方案

    “將訓(xùn)練后的AI神經(jīng)網(wǎng)絡(luò)模型,自動化生成安全且高效的C代碼,用于嵌入式系統(tǒng)” ,近日ETAS攜全新的智能化工具Embedded AI Coder亮相2025上海國際車展。
    的頭像 發(fā)表于 05-07 11:43 ?1366次閱讀
    ETAS全新的<b class='flag-5'>嵌入式</b><b class='flag-5'>AI</b>解決方案

    【「芯片通識課:一本書讀懂芯片技術(shù)」閱讀體驗】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實現(xiàn)人工智能中神經(jīng)網(wǎng)絡(luò)計算的專用處理器,主要用于人工智能深度學(xué)習(xí)模型的
    發(fā)表于 04-02 17:25

    Banana Pi 發(fā)布 BPI-AI2N &amp; BPI-AI2N Carrier,助力 AI 計算與嵌入式開發(fā)

    RZ/V2N——近期在嵌入式世界2025上新發(fā)布,為 AI 計算、嵌入式系統(tǒng)及工自動提供強大支持。這款全新的計算平臺旨在滿足開發(fā)者和企業(yè)用
    發(fā)表于 03-19 17:54

    嵌入式AI加速器DRP-AI 詳細(xì)介紹

    深度神經(jīng)網(wǎng)絡(luò)中使用的人工智能(AI)已經(jīng)為IT領(lǐng)域提供了新的價值。雖然很多人期望用AI來實現(xiàn)嵌入式應(yīng)用,但AI
    的頭像 發(fā)表于 03-15 16:13 ?1404次閱讀
    <b class='flag-5'>嵌入式</b><b class='flag-5'>AI</b><b class='flag-5'>加速器</b>DRP-<b class='flag-5'>AI</b> 詳細(xì)介紹

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池
    的頭像 發(fā)表于 02-12 15:53 ?1132次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2315次閱讀