完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>
標簽 > 電容屏
電容式觸摸屏技術(shù)是利用人體的電流感應(yīng)進行工作的。電容式觸摸屏是一塊四層復(fù)合玻璃屏,玻璃屏的內(nèi)表面和夾層各涂有一層ITO,最外層是一薄層矽土玻璃保護層,夾層ITO涂層作為工作面,四個角上引出四個電極,內(nèi)層ITO為屏蔽層以保證良好的工作環(huán)境。
電容式觸摸屏技術(shù)是利用人體的電流感應(yīng)進行工作的。電容式觸摸屏是一塊四層復(fù)合玻璃屏,玻璃屏的內(nèi)表面和夾層各涂有一層ITO,最外層是一薄層矽土玻璃保護層,夾層ITO涂層作為工作面,四個角上引出四個電極,內(nèi)層ITO為屏蔽層以保證良好的工作環(huán)境。 當手指觸摸在金屬層上時,由于人體電場,用戶和觸摸屏表面形成以一個耦合電容,對于高頻電流來說,電容是直接導(dǎo)體,于是手指從接觸點吸走一個很小的電流。這個電流分別從觸摸屏的四角上的電極中流出,并且流經(jīng)這四個電極的電流與手指到四角的距離成正比,控制器通過對這四個電流比例的精確計算,得出觸摸點的位置。
電容式觸摸屏技術(shù)是利用人體的電流感應(yīng)進行工作的。電容式觸摸屏是一塊四層復(fù)合玻璃屏,玻璃屏的內(nèi)表面和夾層各涂有一層ITO,最外層是一薄層矽土玻璃保護層,夾層ITO涂層作為工作面,四個角上引出四個電極,內(nèi)層ITO為屏蔽層以保證良好的工作環(huán)境。 當手指觸摸在金屬層上時,由于人體電場,用戶和觸摸屏表面形成以一個耦合電容,對于高頻電流來說,電容是直接導(dǎo)體,于是手指從接觸點吸走一個很小的電流。這個電流分別從觸摸屏的四角上的電極中流出,并且流經(jīng)這四個電極的電流與手指到四角的距離成正比,控制器通過對這四個電流比例的精確計算,得出觸摸點的位置。
工作原理
原理概述
電容屏要實現(xiàn)多點觸控,靠的就是增加互電容的電極,簡單地說,就是將屏幕分塊,在每一個區(qū)域里設(shè)置一組互電容模塊都是獨立工作,所以電容屏就可以獨立檢測到各區(qū)域的觸控情況,進行處理后,簡單地實現(xiàn)多點觸控。[1]
電容技術(shù)觸摸面板CTP(Capacity Touch Panel)是利用人體的電流感應(yīng)進行工作的。電容屏是一塊四層復(fù)合玻璃屏,玻璃屏的內(nèi)表面和夾層各涂一層ITO(納米銦錫金屬氧化物),最外層是只有0.0015mm厚的矽土玻璃保護層,夾層ITO涂層作工作面,四個角引出四個電極,內(nèi)層ITO為屏層以保證工作環(huán)境。[3]
當用戶觸摸電容屏?xí)r,由于人體電場,用戶手指和工作面形成一個耦合電容,因為工作面上接有高頻信號,于是手指吸收走一個很小的電流,這個電流分別從屏的四個角上的電極中流出,且理論上流經(jīng)四個電極的電流與手指頭到四角的距離成比例,控制器通過對四個電流比例的精密計算,得出位置??梢赃_到99%的精確度,具備小于3ms的響應(yīng)速度。
投射式電容面板
投射式電容面板的觸控技術(shù)投射電容式觸摸屏是在兩層ITO導(dǎo)電玻璃涂層上蝕刻出不同的ITO導(dǎo)電線路模塊。兩個模塊上蝕刻的圖形相互垂直,可以把它們看作是X和Y方向 連續(xù)變化的滑條。由于X、Y架構(gòu)在不同表面,其相交處形成一電容節(jié)點。一個滑條可以當成驅(qū)動線,另外一個滑條當成是偵測線。當電流經(jīng)過驅(qū)動線中的一條導(dǎo)線時,如果外界有電容變化的信號,那么就會引起另一層導(dǎo)線上電容節(jié)點的變化。偵測電容值的變化可以通過與之相連的電子回路測量得到,再經(jīng)由A/D控制器轉(zhuǎn)為數(shù)字訊號讓計算機做運算處理取得(X,Y) 軸位置,進而達到定位的目地。
操作時,控制器先后供電流給驅(qū)動線,因而使各節(jié)點與導(dǎo)線間形成一特定電場。然后逐列掃描感測線測量其電極間的電容變化量,從而達成多點定位。當手指或觸動媒介接近時,控制器迅速測知觸控節(jié)點與導(dǎo)線間的電容值改變,進而確認觸控的位置。這種一根軸通過一套AC 信號來驅(qū)動,而穿過觸摸屏的響應(yīng)則通過其它軸上的電極感測出來。使用者們把這稱為‘橫穿式’感應(yīng),也可稱為投射式感應(yīng)。傳感器上鍍有X,Y軸的ITO圖案,當手指觸摸觸控屏幕表面時,觸碰點下方的電容值根據(jù)觸控點的遠近而增加,傳感器上連續(xù)性的掃描探測到電容值的變化,控制芯片計算出觸控點并回報給處理器。
結(jié)構(gòu)組成
基本結(jié)構(gòu)
電容式觸摸屏的基本結(jié)構(gòu)是:基板為一個單層有機玻璃,在有機玻璃的內(nèi)外表面分別均勻的鍛上一層透明導(dǎo)電薄膜,分別在外表面的透明導(dǎo)電薄膜的四個角上錐上一個狹長的電極。其工作原理是:當手指觸摸電容式觸摸屏?xí)r,在工作面接通高頻信號,此時手指與觸摸屏工作面形成一個耦合電容,這相當于導(dǎo)體,因為工作面上有高頻信號,手指觸摸時在觸摸點吸走一個小電流,這個小電流分別從觸摸屏的四個角上的電極流出,流經(jīng)四個電極的電流與手指到四角的直線距離成比例,控制器通過對四個電流比例的計算,即可得出接觸點坐標值。[7]
電容式觸控屏可以簡單地看成是由四層復(fù)合屏構(gòu)成的屏體:最外層是玻璃保護層,接著是導(dǎo)電層,第三層是不導(dǎo)電的玻璃屏,最內(nèi)的第四層也是導(dǎo)電層。最內(nèi)導(dǎo)電層是屏蔽層,起到屏蔽內(nèi)部電氣信號的作用,中間的導(dǎo)電層是整個觸控屏的關(guān)鍵部分,四個角或四條邊上有直接的引線,負責(zé)觸控點位置的檢測。[3]
其中最上面的覆蓋層是鋼化玻璃或者聚對苯二甲酸乙二醇酯(PET)。PET 的優(yōu)勢在于觸摸屏可以做到更薄,另一方面也比現(xiàn)有的塑料和玻璃材質(zhì)更加便宜。絕緣層是玻璃(0.4~1mm) 、有機薄膜(10~100um)、粘合劑、空氣層。其中最重要的一層是氧化銦錫(ITO)層,ITO 的典型厚度 50~100nm, 其方塊電阻大約 100~300歐姆范圍。ITO 的工藝三維結(jié)構(gòu)對電容式觸摸屏的影響很大,它直接關(guān)系到觸摸屏的 2 個重要電容參數(shù):感應(yīng)電容(手指與上層 ITO)和寄生電容(上下層 ITO 之間,下層 ITO 與顯示屏幕之間)。[8]
電容式觸摸屏的構(gòu)造主要是在玻璃屏幕上鍍一層透明的薄膜體層,再在導(dǎo)體層外加上一塊保護玻璃,雙玻璃設(shè)計能徹底保護導(dǎo)體層及感應(yīng)器,同時透光率更高,也能更好地支持多點觸控。[9] 電容式觸摸屏在觸摸屏四邊均鍍上狹長的電極,在導(dǎo)電體內(nèi)形成一個低電壓交流電場。在觸摸屏幕時,由于人體電場,手指與導(dǎo)體層間會形成一個耦合電容,四邊電極發(fā)出的電流會流向觸點,而電流強弱與手指到電極的距離成反比,位于觸摸屏幕后的控制器便會計算電流的比例及強弱,準確算出觸摸點的位置。電容觸摸屏的雙玻璃不但能保護導(dǎo)體及感應(yīng)器,更有效地防止外在環(huán)境因素對觸摸屏造成影響,就算屏幕沾有污穢、塵?;蛴蜐n,電容式觸摸屏依然能準確算出觸摸位置。
由于電容隨接觸面積、介質(zhì)的介電的不同而變化,故其穩(wěn)定性較差,往往會產(chǎn)生漂移現(xiàn)象。該種觸摸屏適用于系統(tǒng)開發(fā)的調(diào)試階段。
技術(shù)指標
精確度:99%的準確度。[14]
材質(zhì):完全防刮玻璃材質(zhì)(莫氏硬度7H),不易受尖物刮傷及磨損,不受常見污染源的影響,如水、火、輻射、靜電、灰塵或油污等。兼具護目鏡之護眼功能。[14]
靈敏度:小于兩盎司的施力即可感應(yīng),小于3ms的快速回應(yīng)。[14]
清晰度:三種表面處理(Polish,Etch,Industrial)可供選擇。SMT控制器的MTBF 大于572,600小時(每MILHANDBOOK-217-F1)。[14]
觸摸壽命:任何一點可承受大于5,000萬次的觸摸,一次校正后游標不飄移。
電容觸控技術(shù)是利用手指近接電容觸控面板時所產(chǎn)生電容變化的觸控技術(shù)。電容觸控有兩個重要電容參數(shù),其一是手指和上層感測材質(zhì)(例如ITO)之間的感應(yīng)電容,其二是感測材質(zhì)之間(例如ITO上下層)或感測材質(zhì)與光學(xué)面板之間(例如ITO和LCD)的寄生電容。
導(dǎo)體與導(dǎo)體之間會產(chǎn)生寄生電容,而當手指導(dǎo)體接近不同電壓的感測導(dǎo)體時,也會產(chǎn)生感應(yīng)電容變化。電容感測效應(yīng)便是如何在較大的寄生電容值(30 pico Farad;pF)下,偵測到0。1~2個pF單位微小的感應(yīng)電容變化。電容觸控技術(shù)較為穩(wěn)定、可靠度高,藉由人體該身就是一個電容體的特性,在接觸觸控面板時所產(chǎn)生的電容變化達到感測觸控效果。Atmel市場總監(jiān)Christopher Ard指出,傳感器設(shè)計可以是單面ITO圖形,用于最低功能性接口,例如單觸摸點用于大型虛擬按鈕、滑塊等應(yīng)用,不過更常見的實施方案是兩層設(shè)計(單獨的X和Y層),這便需要復(fù)雜度更高的性能和精準度。
數(shù)據(jù)處理過程
電容式觸摸屏接收到觸摸信號之后,將觸摸數(shù)據(jù)轉(zhuǎn)換成電脈沖,傳送到觸摸屏控制IC進行處理。信號先經(jīng)過一個低噪聲放大器LNA進行放大,然后通過模數(shù)轉(zhuǎn)換和解調(diào),最后送到一個DSP進行數(shù)據(jù)處理。電容式觸摸屏一般有M+N(M列N行)個物理電容觸摸傳感器。這M+N個相互交錯的傳感器組成了M*N個電容感應(yīng)點,當用戶的手指接近觸摸屏的時候,其電容會隨之改變。傳感器的間隔(也就是相鄰行或列間的距離)通常在幾個毫米左右,這個間隔距離決定了觸摸屏的物理分辨率M*N。[5] 電容式觸摸屏模塊和LCD模塊間的坐標系是完全不同的。LCD模塊的像素坐標一般由它的分辨率決定,比如,一塊WVGA的屏,它的分辨率為800*480,也就是說有800行,每行480個RGB像素。從而,一個具體位置可以由X和Y方向上像素點(x,y)來確定。而電容式觸摸屏模塊則是根據(jù)其X和Y的方向上的原始物理尺寸來確定坐標系的。兩坐標系間必須存在一個合理的映射方法,才可以保證輸入和輸出操作的正確性。
所以,觸摸屏控制IC的DSP處理器還得對得到的數(shù)據(jù)進行電容式觸摸屏模塊和LCD模塊間的像素映射轉(zhuǎn)換,從而確保在觸摸屏上感應(yīng)到用戶的觸摸點就是用戶所指的點。另外,為了保持觸摸坐標的穩(wěn)定,觸摸屏控制IC需要進一步處理觸摸點的抖動,包括手指的抖動與電容數(shù)據(jù)的噪聲,并根據(jù)坐標的變化來改變低通濾波器的濾波系數(shù),實現(xiàn)對坐標的平滑處理。[5] 最后,在把數(shù)據(jù)傳到主機之前,還得使用軟件分析數(shù)據(jù),確定每次觸摸是為了使用什么功能。這一過程包含確定屏幕上被觸摸的區(qū)域大小、形狀和位置。如果有必要,處理器會將相似的觸摸整理分組。如果用戶移動手指,處理器就會計算用戶觸摸的起點和終點間的差別。
電阻屏和電容屏的區(qū)別
電阻屏的出現(xiàn)在當年國產(chǎn)大屏山寨機中紅極一時??芍^當時山寨機的標配。隨著蘋果iphone這類高端的電容屏產(chǎn)品的出現(xiàn),電阻屏失去了其競爭力慢慢被人們所冷淡。下面介紹一下電阻屏和電容屏的區(qū)別。并順便介紹一下電阻屏和電容屏的一些知識。
從技術(shù)角度上說,電容屏技術(shù)應(yīng)用的時間比電阻屏晚。電容屏的技術(shù)相對而言更高端。用通俗的話說就是電容屏比電阻屏貴。所以這是它們的第一個區(qū)別。很多時候我們看到很多驚爆價的平板一個幾百一個幾千配置差別卻不大,有一部分情況就是屏幕差異帶來的了。下面是我找到的電阻屏的電路示意圖

從操作方式上兩者有差別,常見我們講笑話,說買了個iphone還掉出個了手寫筆。其內(nèi)涵就是手寫筆是屬于電阻屏的。電阻屏是壓力感應(yīng)的操作方式,任何物體只要在屏幕表面造成彎曲,都能感應(yīng)出來。電容屏工作原理則不同,當用戶觸摸電容屏?xí)r,用戶手指的人體電場和工作面形成一個耦合電容,因為工作面上接有高頻信號,于是手指吸收走一個很小的電流,并且電流分別從屏的四個角上的電極中流出,且理論上流經(jīng)四個電極的電流與手指頭到四角的距離成比例,控制器通過對四個電流比例的精密計算,得出位置。所以電容屏是人體觸摸操作,不需要按壓。下圖是電容屏的工作原理。

表面硬度。因為電阻屏的表面要彎曲感應(yīng),硬度較低,就是畫上去有軟軟的感覺。而電容屏一般最外層是玻璃襯面,光滑而堅硬。這是一個差別。

然后是表面劃痕。其實對于高品質(zhì)電容屏來說貼膜只是為了防止指紋印留在上面,使用中也可以不貼膜。但是電阻屏一般要貼膜保護,因為本身屏幕比較脆弱,不貼膜保護容易壞掉也容易劃痕過多。

響應(yīng)速度。用山寨機或者電阻屏的平板玩過切水果的朋友,一定知道其響應(yīng)速度有些慢。而高端電容屏的響應(yīng)速度很快僅有幾毫秒。
?多點控,雖然并非所有的電容屏都是多點控。但是也有這么個結(jié)論,并非所有單電控的都是電阻屏,但多點控的基本是電容屏。多點控技術(shù)讓電容屏的操作更加便捷更加隨意。這也是很大的一個優(yōu)勢之一

最后是就應(yīng)用的普遍性比較一下。電阻屏曾經(jīng)在山寨機上很流行,隨著山寨機的銷聲匿跡,電阻屏現(xiàn)在只是在低端平板電腦上還有應(yīng)用。而電容屏則分為不同檔次,在各個檔次的手機平板上應(yīng)用。所以現(xiàn)在電容屏更加主流。
以上是我的觀點,下面是網(wǎng)上找到的一張對比圖,對比結(jié)果有些讓人匪夷所思感覺好像電阻屏反而是優(yōu)點眾多。電容屏反而缺點眾多。但是事實告訴我們只要你追求自身完善適應(yīng)潮流,那些所謂的缺點都掩蓋不了你的優(yōu)點。所以最后的一句話是,看別人的比對有時也未必有用,自己要學(xué)會去比對驗證得到自己的區(qū)別

電容屏為什么不需要校準?
簡單來說:電阻屏是因為原理是采取電阻變化的特點而制作的,電阻屏是兩層,當手指按下時第一層會向第二層靠攏,這個時候相當于電源接通,不同的點擊位置則具有不同的電阻反應(yīng)從而判斷位置;但是由于電阻屏幕一般與自帶屏幕有一定的大小差異,或者因為使用者所處環(huán)境的溫度等原因會引起點擊時的電阻值不夠準確從而導(dǎo)致相應(yīng)位置錯誤,所以需要校準,重新確定當前狀態(tài)。 而電容屏,原理是手指觸摸時屏幕并不能按下,而是依靠手指上的電流變化來的,一般而言是手指觸摸時導(dǎo)致了觸摸位置的電荷吸走或者增多,從而需要從周邊補充而引起了屏幕中內(nèi)置的微小電容的電容值發(fā)生變化,從而達到點擊定位的效果,而這些微小的電容都是和屏幕大小位置一起的,不可能發(fā)生位置變化,所以并不需要校準。
當然因為一些原因:比如強烈的靜電或者充電時產(chǎn)生的一些強烈電壓靜電原因會引起屏幕上的微小電容被擊穿的現(xiàn)象,當擊穿后就會出現(xiàn)工作異常,體現(xiàn)為:手機沒有觸摸卻自己不斷的亂點擊(跳屏)等現(xiàn)象。 這樣的情況并不可修復(fù)或修復(fù)代價高,只能換觸摸屏解決。
電容屏和觸摸屏是兩個在電子設(shè)備中廣泛使用的技術(shù),它們之間存在緊密的聯(lián)系但也有顯著的區(qū)別。
電阻屏和電容屏是兩種常見的觸摸屏技術(shù),它們在智能手機、平板電腦、工業(yè)控制系統(tǒng)以及其他需要用戶交互的設(shè)備中廣泛應(yīng)用。
電容屏原理是一種通過感應(yīng)電流或電容變化來檢測觸摸位置的技術(shù)。它主要由一層透明導(dǎo)電材料構(gòu)成的感應(yīng)層和一層透明絕緣層構(gòu)成。當觸摸屏表面有電流通過或產(chǎn)生電容變...
2024-02-03 標簽:電容屏電阻屏感應(yīng)電流 3.2k 0
觸摸電容屏原理及觸摸電容屏劃線出現(xiàn)斷線的原因 一、觸摸電容屏原理 觸摸電容屏是一種用于人機交互的輸入設(shè)備,通過感應(yīng)電容變化來檢測和定位用戶的觸摸動作。其...
電容屏是一種常見的觸摸屏技術(shù),它使用電容感應(yīng)原理來實現(xiàn)對觸摸操作的檢測。具體來說,電容屏通過在屏幕上應(yīng)用一層透明導(dǎo)電材料(通常是金屬氧化物),并在其上布...
在工業(yè)場景中,電阻屏與電容屏的選擇需結(jié)合環(huán)境適應(yīng)性、操作需求、成本預(yù)算三大核心因素,具體抉擇邏輯如下: 一、優(yōu)先選電阻屏的場景 極端環(huán)境與防護需求 高溫...
聚徽揭秘工業(yè)觸控一體機電容屏觸控精度偏移校準實操指南
在工業(yè)自動化場景中,觸控一體機的電容屏因長期運行、環(huán)境變化或機械應(yīng)力可能導(dǎo)致觸控精度偏移,表現(xiàn)為點擊位置與實際響應(yīng)點存在偏差。本文結(jié)合技術(shù)原理與實操案例...
聚徽車載屏:顛簸環(huán)境中電容屏觸控漂移的結(jié)構(gòu)加固技術(shù)
在汽車智能化浪潮的推動下,車載電容式觸摸屏已成為車輛人機交互系統(tǒng)的核心部件,為駕駛者提供便捷的操作體驗,如導(dǎo)航設(shè)置、多媒體控制等。然而,車輛行駛過程中不...
2025-06-25 標簽:電容屏 372 0
為什么電容屏?xí)?“誤認” 水滴為觸控?聚徽解析濕度干擾的底層邏輯與應(yīng)對策略
在雨天使用手機查看地圖,或是。這一現(xiàn)象并非偶然,背后涉及到電容式觸摸屏的工作原理與濕度對其產(chǎn)生干擾的底層邏輯。深入探究這些原理,不僅能讓我們理解故障發(fā)生...
觸控不靈敏?聚徽分享電容屏常見故障排查手冊:10 大問題 + 對應(yīng)解決策略
電容屏憑借便捷的交互體驗成為眾多電子設(shè)備的標配,但在使用過程中,觸控不靈敏、無反應(yīng)等故障卻時常出現(xiàn)。這些問題不僅影響操作效率,還可能帶來諸多不便。本文整...
2025-06-25 標簽:電容屏 2.4k 0
聚徽解析電容式觸摸屏常見失靈問題:從跳屏、漂移到無反應(yīng)的修復(fù)指南
在智能手機、平板電腦等移動設(shè)備幾乎人手一臺的今天,電容式觸摸屏憑借其靈敏的觸控反饋和流暢的操作體驗,成為了現(xiàn)代電子設(shè)備的標配。然而,使用過程中,跳屏、漂...
2025觸控技術(shù)新突破:聚徽揭秘觸摸式一體機如何實現(xiàn)“戴手套操作+防誤觸”雙升級
在工業(yè)4.0與智慧城市建設(shè)的浪潮下,觸摸式一體機正從消費電子向智能制造、醫(yī)療、物流等高可靠性場景滲透。然而,傳統(tǒng)電容屏在手套操作與防誤觸方面的技術(shù)瓶頸,...
觸控交互革命:工控一體機廠家聚徽分享電容 / 電阻屏技術(shù)選型與應(yīng)用場景適配
在工業(yè) 4.0 與智能制造的浪潮推動下,工控一體機作為工業(yè)自動化的核心交互設(shè)備,其觸控技術(shù)的革新直接影響著生產(chǎn)效率與操作體驗。電容屏與電阻屏作為目前工控...
換一批
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
| 電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
| BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
| 無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
| 直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
| 步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
| 伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術(shù) | Microchip |
| Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
| 示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
| OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
| C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
| Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
| DuerOS | Brillo | Windows11 | HarmonyOS |