亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>解讀多層神經(jīng)網(wǎng)絡反向傳播原理

解讀多層神經(jīng)網(wǎng)絡反向傳播原理

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關推薦

從零開始學習用Python構(gòu)建神經(jīng)網(wǎng)絡

內(nèi)容涵蓋神經(jīng)網(wǎng)絡定義、損失函數(shù)、前向傳播反向傳播、梯度下降算法,對于想要了解深度學習運作原理的各位來說,內(nèi)容精彩不可錯過。
2018-05-30 08:54:5610373

深度學習前饋神經(jīng)網(wǎng)絡技術分析

感知機算法中包含了前向傳播(FP)和反向傳播(BP)算法,但在介紹它們之前,我們先來了解一下深度神經(jīng)網(wǎng)絡的激活函數(shù)。
2020-02-08 19:03:542606

神經(jīng)網(wǎng)絡50例

神經(jīng)網(wǎng)絡50例
2012-11-28 16:49:56

神經(jīng)網(wǎng)絡Matlab程序

神經(jīng)網(wǎng)絡Matlab程序
2009-09-15 12:52:24

神經(jīng)網(wǎng)絡與SVM的模塊

大家有知道labview中神經(jīng)網(wǎng)絡和SVM的工具包是哪個嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進步
2017-10-13 11:41:43

神經(jīng)網(wǎng)絡反向傳播算法

03_深度學習入門_神經(jīng)網(wǎng)絡反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡基本介紹

神經(jīng)網(wǎng)絡基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡教程(李亞非)

神經(jīng)元  第3章 EBP網(wǎng)絡(反向傳播算法)  3.1 含隱層的前饋網(wǎng)絡的學習規(guī)則  3.2 Sigmoid激發(fā)函數(shù)下的BP算法  3.3 BP網(wǎng)絡的訓練與測試  3.4 BP算法的改進  3.5 多層
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡移植到STM32的方法

神經(jīng)網(wǎng)絡移植到STM32最近在做的一個項目需要用到網(wǎng)絡進行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機上做神經(jīng)網(wǎng)絡計算,這樣就可以實時計算,不依賴于上位機。所以要解決的主要是兩個
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡簡介

神經(jīng)網(wǎng)絡簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡資料

基于深度學習的神經(jīng)網(wǎng)絡算法
2019-05-16 17:25:05

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡

誤差反向傳播算法的學習過程,由信息的正向傳播和誤差的反向傳播兩個過程組成,是一種應用最為廣泛的神經(jīng)網(wǎng)絡。先來看一下BP神經(jīng)網(wǎng)絡的流程圖:由BP神經(jīng)網(wǎng)絡流程圖可以看出,正向傳播處理過程和人工神經(jīng)網(wǎng)絡的流程
2018-06-05 10:11:50

MATLAB神經(jīng)網(wǎng)絡

MATLAB神經(jīng)網(wǎng)絡
2013-07-08 15:17:13

MATLAB神經(jīng)網(wǎng)絡工具箱函數(shù)

MATLAB神經(jīng)網(wǎng)絡工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡創(chuàng)建函數(shù)newp
2009-09-22 16:10:08

Matlab神經(jīng)網(wǎng)絡工具箱是什么? 它在同步中的應用有哪些?

Matlab神經(jīng)網(wǎng)絡工具箱是什么?Matlab神經(jīng)網(wǎng)絡工具箱在同步中的應用有哪些?
2021-04-26 06:42:29

labview BP神經(jīng)網(wǎng)絡的實現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學習工具包(MLT),但是里面沒有關于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實現(xiàn)神經(jīng)網(wǎng)絡 精選資料分享

神經(jīng)神經(jīng)網(wǎng)絡,對于神經(jīng)網(wǎng)絡的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡模型用于訓練的輸入數(shù)據(jù):對應的輸出數(shù)據(jù):我們這里設置:1:節(jié)點個數(shù)設置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21

【AI學習】第3篇--人工神經(jīng)網(wǎng)絡

`本篇主要介紹:人工神經(jīng)網(wǎng)絡的起源、簡單神經(jīng)網(wǎng)絡模型、更多神經(jīng)網(wǎng)絡模型、機器學習的步驟:訓練與預測、訓練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡基礎知識

神經(jīng)網(wǎng)絡的計算。對于多層多節(jié)點的神經(jīng)網(wǎng)絡,我們可以使用矩陣乘法來表示。在上面的神經(jīng)網(wǎng)絡中,我們將權重作為一個矩陣,將第一層的輸入作為另一個矩陣,兩個矩陣相乘,得到的矩陣恰好為第二層的輸入。對于python
2019-03-03 22:10:19

【案例分享】ART神經(jīng)網(wǎng)絡與SOM神經(jīng)網(wǎng)絡

今天學習了兩個神經(jīng)網(wǎng)絡,分別是自適應諧振(ART)神經(jīng)網(wǎng)絡與自組織映射(SOM)神經(jīng)網(wǎng)絡。整體感覺不是很難,只不過一些最基礎的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡是競爭學習的一個代表,競爭型學習
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡

傳播的,不會回流),區(qū)別于循環(huán)神經(jīng)網(wǎng)絡RNN。BP算法(Back Propagation):誤差反向傳播算法,用于更新網(wǎng)絡中的權重。BP神經(jīng)網(wǎng)絡思想:表面上:1. 數(shù)據(jù)信息的前向傳播,從輸入層到隱含層
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡原理及下載

人工神經(jīng)網(wǎng)絡是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡實現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡課件

人工神經(jīng)網(wǎng)絡課件
2016-06-19 10:15:48

什么是LSTM神經(jīng)網(wǎng)絡

簡單理解LSTM神經(jīng)網(wǎng)絡
2021-01-28 07:16:57

什么是圖卷積神經(jīng)網(wǎng)絡?

圖卷積神經(jīng)網(wǎng)絡
2019-08-20 12:05:29

優(yōu)化神經(jīng)網(wǎng)絡訓練方法有哪些?

優(yōu)化神經(jīng)網(wǎng)絡訓練方法有哪些?
2022-09-06 09:52:36

全連接神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡有什么區(qū)別

全連接神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡幾乎都是部署在云端(服務器上),設備端采集到數(shù)據(jù)通過網(wǎng)絡發(fā)送給服務器做inference(推理),結(jié)果再通過網(wǎng)絡返回給設備端。如今越來越多的神經(jīng)網(wǎng)絡部署在嵌入式設備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡如何使用

卷積神經(jīng)網(wǎng)絡(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用

陷入了近二十年的停滯。1986 年到 1988 年是神經(jīng)網(wǎng)絡模型發(fā)展的第二階段,稱為第二 代神經(jīng)網(wǎng)絡模型。1986 年 Rumelhart 等人提出了誤 差反向傳播算法(back
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡的優(yōu)點是什么

卷積神經(jīng)網(wǎng)絡的優(yōu)點
2020-05-05 18:12:50

卷積神經(jīng)網(wǎng)絡的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡?ImageNet-2010網(wǎng)絡結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

反饋神經(jīng)網(wǎng)絡算法是什么

反饋神經(jīng)網(wǎng)絡算法
2020-04-28 08:36:58

圖像預處理和改進神經(jīng)網(wǎng)絡推理的簡要介紹

為提升識別準確率,采用改進神經(jīng)網(wǎng)絡,通過Mnist數(shù)據(jù)集進行訓練。整體處理過程分為兩步:圖像預處理和改進神經(jīng)網(wǎng)絡推理。圖像預處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預處理和神經(jīng)網(wǎng)絡推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于BP神經(jīng)網(wǎng)絡的PID控制

最近在學習電機的智能控制,上周學習了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡的PID控制。神經(jīng)網(wǎng)絡具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡的手勢識別系統(tǒng)

網(wǎng)絡?! P 網(wǎng)絡的學習規(guī)則是使用最速下降法,通過反向傳播來不斷調(diào)整網(wǎng)絡的權值和閾值,使網(wǎng)絡的誤差平方和最小?! ? BP 算法  BP 神經(jīng)網(wǎng)絡是一種前向傳播多層網(wǎng)絡網(wǎng)絡除了輸入節(jié)點以外,還有
2018-11-13 16:04:45

基于BP神經(jīng)網(wǎng)絡的辨識

基于BP神經(jīng)網(wǎng)絡的辨識
2018-01-04 13:37:27

基于FPGA的神經(jīng)網(wǎng)絡的性能評估及局限性

FPGA實現(xiàn)神經(jīng)網(wǎng)絡關鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡的性能評估及局限性
2021-04-30 06:58:13

基于RBF神經(jīng)網(wǎng)絡的辨識

基于RBF神經(jīng)網(wǎng)絡的辨識
2018-01-04 13:38:52

如何使用Keras框架搭建一個小型的神經(jīng)網(wǎng)絡多層感知器

本文介紹了如何使用Keras框架,搭建一個小型的神經(jīng)網(wǎng)絡-多層感知器,并通過給定數(shù)據(jù)進行計算訓練,最好將訓練得到的模型提取出參數(shù),放在51單片機上進行運行。
2021-11-22 07:00:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡?

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡?
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡?神經(jīng)網(wǎng)絡包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權重的層,以提高模型的預測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預測
2021-07-12 08:02:11

如何設計BP神經(jīng)網(wǎng)絡圖像壓縮算法?

,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關,還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關。在各種神經(jīng)網(wǎng)絡中,多層前饋神經(jīng)網(wǎng)絡具有很強的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30

有關脈沖神經(jīng)網(wǎng)絡的基本知識

譯者|VincentLee來源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(Spiking neural network, SNN)將脈沖神經(jīng)元作為計算單...
2021-07-26 06:23:59

有提供編寫神經(jīng)網(wǎng)絡預測程序服務的嗎?

有提供編寫神經(jīng)網(wǎng)絡預測程序服務的嗎?
2011-12-10 13:50:46

機器學習神經(jīng)網(wǎng)絡參數(shù)的代價函數(shù)

吳恩達機器學習筆記之神經(jīng)網(wǎng)絡參數(shù)的反向傳播算法
2019-05-22 15:11:21

求助地震波神經(jīng)網(wǎng)絡程序

求助地震波神經(jīng)網(wǎng)絡程序,共同交流!!
2013-05-11 08:14:19

求助基于labview的神經(jīng)網(wǎng)絡pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關于神經(jīng)網(wǎng)絡的問題

求助大神 小的現(xiàn)在有個難題: 一組車重實時數(shù)據(jù) 對應一個車重的最終數(shù)值(一個一維數(shù)組輸入對應輸出一個數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個最大值、、、等等的計算 我的目的就是弄清楚這個中間計算過程 最近實在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡 請教大神用什么神經(jīng)網(wǎng)絡好求神經(jīng)網(wǎng)絡程序
2016-07-14 13:35:44

求基于labview的BP神經(jīng)網(wǎng)絡算法的實現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡算法的實現(xiàn)過程,最好有程序哈,謝謝!!
2012-12-10 14:55:50

深度神經(jīng)網(wǎng)絡是什么

多層感知機 深度神經(jīng)網(wǎng)絡in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

簡單神經(jīng)網(wǎng)絡的實現(xiàn)

最簡單的神經(jīng)網(wǎng)絡
2019-09-11 11:57:36

脈沖耦合神經(jīng)網(wǎng)絡在FPGA上的實現(xiàn)誰會?

脈沖耦合神經(jīng)網(wǎng)絡(PCNN)在FPGA上的實現(xiàn),實現(xiàn)數(shù)據(jù)分類功能,有報酬。QQ470345140.
2013-08-25 09:57:14

請問Labveiw如何調(diào)用matlab訓練好的神經(jīng)網(wǎng)絡模型呢?

我在matlab中訓練好了一個神經(jīng)網(wǎng)絡模型,想在labview中調(diào)用,請問應該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡工具包嗎?
2018-07-05 17:32:32

請問為什么要用卷積神經(jīng)網(wǎng)絡

為什么要用卷積神經(jīng)網(wǎng)絡?
2020-06-13 13:11:39

非局部神經(jīng)網(wǎng)絡,打造未來神經(jīng)網(wǎng)絡基本組件

`將非局部計算作為獲取長時記憶的通用模塊,提高神經(jīng)網(wǎng)絡性能在深度神經(jīng)網(wǎng)絡中,獲取長時記憶(long-range dependency)至關重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運算
2018-11-12 14:52:50

BP神經(jīng)網(wǎng)絡在胸癌診斷中的應用研究

為了提高胸癌識別的識別精度,提出了應用反向傳播網(wǎng)絡(Back Propagation, BP)建立胸癌診斷。BP 網(wǎng)絡是一種典型的多層前饋型神經(jīng)網(wǎng)絡,采用有監(jiān)督學習模式,利用均方誤差和梯
2010-01-20 16:02:2421

用現(xiàn)場可編程門陣列設計前向神經(jīng)網(wǎng)絡

本文給出了利用現(xiàn)場可編程門陣列來實現(xiàn)多層前向神經(jīng)網(wǎng)絡反向傳播-BP 網(wǎng)絡)的方法。首先利用了相關軟件在理論上作了算法上的仿真,在此基礎上構(gòu)建了前向神經(jīng)網(wǎng)絡的硬
2010-01-25 11:56:136

BP神經(jīng)網(wǎng)絡在異向介質(zhì)基本結(jié)構(gòu)分析中的應用

為了減少傳統(tǒng)數(shù)值分析法由于厚度諧振而引起的結(jié)果錯誤問題,實現(xiàn)異向介質(zhì)高分析精度與高效率的共存,建立基于反向傳播多層前饋型神經(jīng)網(wǎng)絡(BP 神經(jīng)網(wǎng)絡)的異向介質(zhì)電磁特性與
2010-02-09 14:57:457

基于前向?qū)ο?b class="flag-6" style="color: red">傳播神經(jīng)網(wǎng)絡的信息檢索技術研究

提出了一種基于前向?qū)ο?b class="flag-6" style="color: red">傳播神經(jīng)網(wǎng)絡的信息檢索算法。分析了信息檢索技術的基本概念、原理、以及檢索方式,研究了科技信息檢索的流程,研究了前向?qū)ο?b class="flag-6" style="color: red">傳播神經(jīng)網(wǎng)絡的基本模型
2012-10-17 11:19:5331

多層感知器和反向傳播進行入門級的介紹

本文對多層感知器和反向傳播進行入門級的介紹。人工神經(jīng)網(wǎng)絡是一種計算模型,啟發(fā)自人類大腦處理信息的生物神經(jīng)網(wǎng)絡。 人工神經(jīng)網(wǎng)絡是一種計算模型,啟發(fā)自人類大腦處理信息的生物神經(jīng)網(wǎng)絡。人工神經(jīng)網(wǎng)絡在語音識別、計算機視覺和文本處理領域取得了一系列突破,讓機器學習研究和產(chǎn)業(yè)感到了興奮。
2017-11-15 15:26:014070

基于擴展反向傳播神經(jīng)網(wǎng)絡的自適應控制方法

針對單輸入單輸出非線性系統(tǒng)的不確定性問題,提出了一種新型的基于擴展反向傳播(BP)神經(jīng)網(wǎng)絡的自適應控制方法。首先,采用離線數(shù)據(jù)來訓練BP神經(jīng)網(wǎng)絡的權值向量;然后,通過在線調(diào)節(jié)伸縮因子和逼近精度估計值
2017-12-01 13:53:310

基于BP神經(jīng)網(wǎng)絡的辨識

基于BP神經(jīng)網(wǎng)絡的辨識,1986年,Rumelhart等提出了誤差反向傳播神經(jīng)網(wǎng)絡,簡稱BP網(wǎng)絡(Back Propagation),該網(wǎng)絡是一種單向傳播多層前向網(wǎng)絡。 誤差反向傳播
2017-12-06 15:11:580

基于反相傳播神經(jīng)網(wǎng)絡改進的MGEKF算法

增益修改的卡爾曼濾波( MGEKF)算法在實際應用時,一般使用帶有誤差的測量值代替真實值進行增益修正計算,導致修正結(jié)果也被誤差污染。針對這一問題,提出一種基于反向傳播神經(jīng)網(wǎng)絡( BPNN)改進
2017-12-18 14:27:130

利用SQL查詢語句構(gòu)建隱藏層的神經(jīng)網(wǎng)絡

我們將純粹用SQL實現(xiàn)含有一個隱藏層(以及帶 ReLU 和 softmax 激活函數(shù))的神經(jīng)網(wǎng)絡。這些神經(jīng)網(wǎng)絡訓練的步驟包含前向傳播反向傳播,將在 BigQuery 的單個SQL查詢語句中實現(xiàn)
2018-05-15 17:48:00978

基于Numpy實現(xiàn)神經(jīng)網(wǎng)絡反向傳播

和DeepMind數(shù)據(jù)科學家、Udacity深度學習導師Andrew Trask一起,基于Numpy手寫神經(jīng)網(wǎng)絡,更深刻地理解反向傳播這一概念。
2018-04-01 09:29:004760

手動設計一個卷積神經(jīng)網(wǎng)絡(前向傳播反向傳播

本文主要寫卷積神經(jīng)網(wǎng)絡如何進行一次完整的訓練,包括前向傳播反向傳播,并自己手寫一個卷積神經(jīng)網(wǎng)絡。
2018-05-28 10:35:2017482

BP神經(jīng)網(wǎng)絡概述

BP 神經(jīng)網(wǎng)絡是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡,BP算法是迄今最成功的神經(jīng)網(wǎng)絡學習算法?,F(xiàn)實任務中使用神經(jīng)網(wǎng)絡時,大多是在使用 BP
2018-06-19 15:17:1542819

反向傳播算法的工作原理

反向傳播算法(BP算法)是目前用來訓練人工神經(jīng)網(wǎng)絡的最常用且最有效的算法。作為谷歌機器學習速成課程的配套材料,谷歌推出一個演示網(wǎng)站,直觀地介紹了反向傳播算法的工作原理。
2018-07-02 16:01:109665

如何使用numpy搭建一個卷積神經(jīng)網(wǎng)絡詳細方法和程序概述

內(nèi)容將繼續(xù)秉承之前 DNN 的學習路線,在利用Tensorflow搭建神經(jīng)網(wǎng)絡之前,先嘗試利用numpy手動搭建卷積神經(jīng)網(wǎng)絡,以期對卷積神經(jīng)網(wǎng)絡的卷積機制、前向傳播反向傳播的原理和過程有更深刻的理解。
2018-10-20 10:55:555799

卷積神經(jīng)網(wǎng)絡的權值反向傳播機制和MATLAB的實現(xiàn)方法

降低了網(wǎng)絡需要訓練的數(shù)量級。本文以MINST手寫體數(shù)據(jù)庫為訓練樣本,討論卷積神經(jīng)網(wǎng)絡的權值反向傳播機制和MATLAB的實現(xiàn)方法;對激活函數(shù)tanh和relu梯度消失問題進行分析和優(yōu)化,對改進后的激活函數(shù)進行訓練,得出最優(yōu)的修正參數(shù)
2018-12-06 15:29:4814

神經(jīng)網(wǎng)絡中的dropout是什么?怎么使用

Dropout是在《ImageNet Classification with Deep Convolutional》這篇論文里提出來為了防止神經(jīng)網(wǎng)絡的過擬合。它的主要思想是讓隱藏層的節(jié)點在每次迭代時(包括正向和反向傳播)有一定幾率(keep-prob)失效。
2020-01-28 17:44:0021242

BP神經(jīng)網(wǎng)絡的概念

BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡,其主要的特點是:信號是前向傳播的,而誤差是反向傳播的。具體來說,對于如下的只含一個隱層的神經(jīng)網(wǎng)絡模型:輸入向量應為n個特征
2020-09-24 11:51:3512811

神經(jīng)網(wǎng)絡理論到實踐(2):理解并實現(xiàn)反向傳播及驗證神經(jīng)網(wǎng)絡是否正確

專欄中《零神經(jīng)網(wǎng)絡實戰(zhàn)》系列持續(xù)更新介紹神經(jīng)元怎么工作,最后使用python從0到1不調(diào)用任何依賴神經(jīng)網(wǎng)絡框架(不使用tensorflow等框架)...
2020-12-10 19:27:06595

淺析深度神經(jīng)網(wǎng)絡(DNN)反向傳播算法(BP)

在 深度神經(jīng)網(wǎng)絡(DNN)模型與前向傳播算法 中,我們對DNN的模型和前向傳播算法做了總結(jié),這里我們更進一步,對DNN的反向傳播算法(Back Propagation,BP)做一個總結(jié)。 1. DNN反向傳播算法要解決的問題
2021-03-22 16:28:223110

基于脈沖神經(jīng)網(wǎng)絡的遷移學習算法

使用脈沖序列進行數(shù)據(jù)處理的脈沖神經(jīng)網(wǎng)絡具有優(yōu)異的低功耗特性,但由于學習算法不成熟,多層網(wǎng)絡練存在收斂困難的問題。利用反向傳播網(wǎng)絡具有學習算法成熟和訓練速度快的特點,設計一種遷移學習算法?;?b class="flag-6" style="color: red">反向
2021-05-24 16:03:0715

BP(BackPropagation)反向傳播神經(jīng)網(wǎng)絡介紹及公式推導

BP(BackPropagation)反向傳播神經(jīng)網(wǎng)絡介紹及公式推導(電源和地電氣安全間距)-該文檔為BP(BackPropagation)反向傳播神經(jīng)網(wǎng)絡介紹及公式推導詳述資料,講解的還不錯,感興趣的可以下載看看…………………………
2021-07-26 10:31:3248

神經(jīng)網(wǎng)絡原理簡述—參數(shù)正則

前面的一篇原理簡述的文章中,給大家簡單介紹了神經(jīng)網(wǎng)絡前(后)傳播的有向圖、反向傳播的計算和更新。這篇文章跟大家簡單討論一下神經(jīng)...
2022-02-07 11:33:023

什么是神經(jīng)網(wǎng)絡?什么是卷積神經(jīng)網(wǎng)絡

在介紹卷積神經(jīng)網(wǎng)絡之前,我們先回顧一下神經(jīng)網(wǎng)絡的基本知識。就目前而言,神經(jīng)網(wǎng)絡是深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡
2023-02-23 09:14:442256

詳解神經(jīng)網(wǎng)絡反向傳播和梯度下降

摘要:反向傳播指的是計算神經(jīng)網(wǎng)絡參數(shù)梯度的方法。
2023-03-14 11:07:10589

三個最流行神經(jīng)網(wǎng)絡

在本文中,我們將了解深度神經(jīng)網(wǎng)絡的基礎知識和三個最流行神經(jīng)網(wǎng)絡多層神經(jīng)網(wǎng)絡(MLP),卷積神經(jīng)網(wǎng)絡(CNN)和遞歸神經(jīng)網(wǎng)絡(RNN)。
2023-05-15 14:19:181096

手寫數(shù)字識別神經(jīng)網(wǎng)絡的實現(xiàn)(2)

在練習二中,手寫數(shù)字識別使用數(shù)值微分的方式實現(xiàn)了神經(jīng)網(wǎng)絡,現(xiàn)在用誤差反向傳播法來實現(xiàn)。兩者的區(qū)別僅僅是使用不同方法求梯度。
2023-06-23 16:57:00424

卷積神經(jīng)網(wǎng)絡python代碼

的卷積操作,將不同層次的特征進行提取,從而通過反向傳播算法不斷優(yōu)化網(wǎng)絡權重,最終實現(xiàn)分類和預測等任務。 在本文中,我們將介紹如何使用Python實現(xiàn)卷積神經(jīng)網(wǎng)絡,并詳細說明每一個步驟及其原理。 第一步:導入必要的庫 在開始編寫代碼前,我們需要先導入一些必要的Python庫。具體如
2023-08-21 16:41:35615

卷積神經(jīng)網(wǎng)絡和深度神經(jīng)網(wǎng)絡的優(yōu)缺點 卷積神經(jīng)網(wǎng)絡和深度神經(jīng)網(wǎng)絡的區(qū)別

深度神經(jīng)網(wǎng)絡是一種基于神經(jīng)網(wǎng)絡的機器學習算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預測和分類。卷積神經(jīng)網(wǎng)絡是深度神經(jīng)網(wǎng)絡的一種,主要應用于圖像和視頻處理領域。
2023-08-21 17:07:361867

卷積神經(jīng)網(wǎng)絡算法流程 卷積神經(jīng)網(wǎng)絡模型工作流程

,其獨特的卷積結(jié)構(gòu)可以有效地提取圖像和音頻等信息的特征,以用于分類、識別等任務。本文將從卷積神經(jīng)網(wǎng)絡的基本結(jié)構(gòu)、前向傳播算法、反向傳播算法等方面探討其算法流程與模型工作流程,并介紹其在圖像分類、物體檢測和人臉識別等領域中的應用。 一、卷積神經(jīng)網(wǎng)絡的基本結(jié)
2023-08-21 16:50:191316

人工神經(jīng)網(wǎng)絡和bp神經(jīng)網(wǎng)絡的區(qū)別

著重要作用。BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network, BPNN)是人工神經(jīng)網(wǎng)絡中的一種常見的多層前饋神經(jīng)網(wǎng)絡,
2023-08-22 16:45:182941

Kaggle知識點:訓練神經(jīng)網(wǎng)絡的7個技巧

科學神經(jīng)網(wǎng)絡模型使用隨機梯度下降進行訓練,模型權重使用反向傳播算法進行更新。通過訓練神經(jīng)網(wǎng)絡模型解決的優(yōu)化問題非常具有挑戰(zhàn)性,盡管這些算法在實踐中表現(xiàn)出色,但不能保證它們會及時收斂到一個良好的模型
2023-12-30 08:27:54319

已全部加載完成