亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)與深度學(xué)習(xí)之間比較

電子工程師 ? 來源:yxw ? 2019-05-11 10:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,隨著科技的快速發(fā)展,人工智能不斷進(jìn)入我們的視野中。作為人工智能的核心技術(shù),機(jī)器學(xué)習(xí)深度學(xué)習(xí)也變得越來越火。一時(shí)間,它們幾乎成為了每個(gè)人都在談?wù)摰脑掝}。那么,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)到底是什么,它們之間究竟有什么不同呢?

什么是機(jī)器學(xué)習(xí)?

機(jī)器學(xué)習(xí)(Machine Learning,ML)是人工智能的子領(lǐng)域,也是人工智能的核心。它囊括了幾乎所有對(duì)世界影響最大的方法(包括深度學(xué)習(xí))。機(jī)器學(xué)習(xí)理論主要是設(shè)計(jì)和分析一些讓計(jì)算機(jī)可以自動(dòng)學(xué)習(xí)的算法

舉個(gè)例子,假設(shè)要構(gòu)建一個(gè)識(shí)別貓的程序。傳統(tǒng)上如果我們想讓計(jì)算機(jī)進(jìn)行識(shí)別,需要輸入一串指令,例如貓長(zhǎng)著毛茸茸的毛、頂著一對(duì)三角形的的耳朵等,然后計(jì)算機(jī)根據(jù)這些指令執(zhí)行下去。但是如果我們對(duì)程序展示一只老虎的照片,程序應(yīng)該如何反應(yīng)呢?更何況通過傳統(tǒng)方式要制定全部所需的規(guī)則,而且在此過程中必然會(huì)涉及到一些困難的概念,比如對(duì)毛茸茸的定義。因此,更好的方式是讓機(jī)器自學(xué)。

我們可以為計(jì)算機(jī)提供大量的貓的照片,系統(tǒng)將以自己特有的方式查看這些照片。隨著實(shí)驗(yàn)的反復(fù)進(jìn)行,系統(tǒng)會(huì)不斷學(xué)習(xí)更新,最終能夠準(zhǔn)確地判斷出哪些是貓,哪些不是貓。

什么是深度學(xué)習(xí)?

深度學(xué)習(xí)(DeepLearning,DL)屬于機(jī)器學(xué)習(xí)的子類。它的靈感來源于人類大腦的工作方式,是利用深度神經(jīng)網(wǎng)絡(luò)來解決特征表達(dá)的一種學(xué)習(xí)過程。深度神經(jīng)網(wǎng)絡(luò)本身并非是一個(gè)全新的概念,可理解為包含多個(gè)隱含層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。為了提高深層神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效果,人們對(duì)神經(jīng)元的連接方法以及激活函數(shù)等方面做出了調(diào)整。其目的在于建立、模擬人腦進(jìn)行分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),模仿人腦的機(jī)制來解釋數(shù)據(jù),如文本、圖像、聲音。

機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的比較

1、應(yīng)用場(chǎng)景

機(jī)器學(xué)習(xí)在指紋識(shí)別、特征物體檢測(cè)等領(lǐng)域的應(yīng)用基本達(dá)到了商業(yè)化的要求。

深度學(xué)習(xí)主要應(yīng)用于文字識(shí)別、人臉技術(shù)、語(yǔ)義分析、智能監(jiān)控等領(lǐng)域。目前在智能硬件、教育、醫(yī)療等行業(yè)也在快速布局。

2、所需數(shù)據(jù)量

機(jī)器學(xué)習(xí)能夠適應(yīng)各種數(shù)據(jù)量,特別是數(shù)據(jù)量較小的場(chǎng)景。如果數(shù)據(jù)量迅速增加,那么深度學(xué)習(xí)的效果將更加突出,這是因?yàn)樯疃葘W(xué)習(xí)算法需要大量數(shù)據(jù)才能完美理解。

3、執(zhí)行時(shí)間

執(zhí)行時(shí)間是指訓(xùn)練算法所需要的時(shí)間量。一般來說,深度學(xué)習(xí)算法需要大量時(shí)間進(jìn)行訓(xùn)練。這是因?yàn)樵撍惴ò泻芏鄥?shù),因此訓(xùn)練它們需要比平時(shí)更長(zhǎng)的時(shí)間。相對(duì)而言,機(jī)器學(xué)習(xí)算法的執(zhí)行時(shí)間更少。

4、解決問題的方法

機(jī)器學(xué)習(xí)算法遵循標(biāo)準(zhǔn)程序以解決問題。它將問題拆分成數(shù)個(gè)部分,對(duì)其進(jìn)行分別解決,而后再將結(jié)果結(jié)合起來以獲得所需的答案。深度學(xué)習(xí)則以集中方式解決問題,而不必進(jìn)行問題拆分。

在本文中,我們對(duì)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的區(qū)別作出了簡(jiǎn)要概述。目前,這兩種算法已被廣泛應(yīng)用于商業(yè)領(lǐng)域,相信在未來,機(jī)器學(xué)習(xí)與深度學(xué)習(xí)能夠?yàn)楦嘈袠I(yè)帶來令人激動(dòng)的光明前景。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49551

    瀏覽量

    259560
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(乃至生產(chǎn)自動(dòng)化)帶來的潛力,因?yàn)?b class='flag-5'>深度學(xué)習(xí)并非只屬于計(jì)算機(jī)科學(xué)家或程序員。 從頭開始:什么
    的頭像 發(fā)表于 09-10 17:38 ?556次閱讀
    如何在<b class='flag-5'>機(jī)器</b>視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來,隨著ChatGPT、Claude、文心一言等大語(yǔ)言模型在生成文本、對(duì)話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3800次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?1197次閱讀

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡(jiǎn)直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?643次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭(zhēng)形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?745次閱讀

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?536次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1220次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1703次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?638次閱讀

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對(duì)比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語(yǔ)可能并不是一個(gè)常見的術(shù)語(yǔ),它可能是指"比較"(comparison)的縮寫。 比較機(jī)器
    的頭像 發(fā)表于 12-17 09:35 ?1233次閱讀

    GPU在深度學(xué)習(xí)中的應(yīng)用 GPUs在圖形設(shè)計(jì)中的作用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動(dòng)技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)在深度學(xué)習(xí)中扮演著至關(guān)重要的角色,其強(qiáng)大的并行處理能力使得訓(xùn)練復(fù)雜的神經(jīng)網(wǎng)絡(luò)模
    的頭像 發(fā)表于 11-19 10:55 ?2014次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?1408次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門為深度學(xué)習(xí)機(jī)
    的頭像 發(fā)表于 11-15 09:19 ?1733次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?2627次閱讀

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應(yīng)運(yùn)而生,它們通過
    的頭像 發(fā)表于 11-13 10:39 ?1705次閱讀