亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

CEVA深度神經(jīng)網(wǎng)絡(luò)編譯器的最新版本支持開(kāi)放式神經(jīng)網(wǎng)絡(luò)交換ONNX格式

CEVA ? 來(lái)源:lq ? 2018-12-07 11:36 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

CEVA宣布其獲獎(jiǎng)的CEVA深度神經(jīng)網(wǎng)絡(luò)(CDNN) 編譯器的最新版本支持開(kāi)放式神經(jīng)網(wǎng)絡(luò)交換Open Neural Network Exchange(ONNX)格式。

CEVA副總裁兼視覺(jué)業(yè)務(wù)部門(mén)總經(jīng)理Ilan Yona 表示:“CEVA全力確保實(shí)現(xiàn)開(kāi)放、可互操作的AI生態(tài)系統(tǒng),人工智能應(yīng)用程序開(kāi)發(fā)人員能夠充分利用生態(tài)系統(tǒng)中各種不同深度學(xué)習(xí)框架,考慮其功能和易用性,為所需特定應(yīng)用選擇最合適的深度學(xué)習(xí)框架。通過(guò)為CDNN編譯器技術(shù)添加ONNX支持,我們?yōu)镃EVA-XM和NeuPro的客戶及生態(tài)系統(tǒng)合作伙伴提供了更廣泛的功能,用于培訓(xùn)和豐富其神經(jīng)網(wǎng)絡(luò)應(yīng)用。”

ONNX是由Facebook、微軟和AWS創(chuàng)建的開(kāi)放格式,用于實(shí)現(xiàn)AI社群內(nèi)的互操作性和可移植性,可讓開(kāi)發(fā)人員針對(duì)項(xiàng)目使用合適的工具組合,而不會(huì)被任何一個(gè)框架或生態(tài)系統(tǒng)“鎖定”。ONNX標(biāo)準(zhǔn)確保了不同深度學(xué)習(xí)框架之間的互操作性,容許開(kāi)發(fā)人員完全自由地選用任何機(jī)器學(xué)習(xí)框架來(lái)訓(xùn)練其神經(jīng)網(wǎng)絡(luò),然后使用另一個(gè)AI框架進(jìn)行部署。現(xiàn)在,通過(guò)CDNN神經(jīng)網(wǎng)絡(luò)編譯器的對(duì)ONNX的支持,開(kāi)發(fā)人員可以導(dǎo)入以任何ONNX兼容框架生成的模型,并將之部署在CEVA-XM視覺(jué)DSP和NeuPro AI處理器上。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:CEVA為CDNN神經(jīng)網(wǎng)絡(luò)編譯器增添ONNX支持

文章出處:【微信號(hào):CEVA-IP,微信公眾號(hào):CEVA】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    NMSIS NN 軟件庫(kù)是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫(kù)分為多個(gè)功能,每個(gè)功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開(kāi)發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個(gè)手寫(xiě)數(shù)字識(shí)別的神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲(chóng)的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?461次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過(guò)權(quán)重連接。信號(hào)在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1149次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1377次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1156次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1250次閱讀

    深度學(xué)習(xí)入門(mén):簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?751次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1960次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?987次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2326次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?1124次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1868次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問(wèn)題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?2070次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長(zhǎng)序列時(shí)存在梯度消失或梯度爆炸的問(wèn)題。為了解決這一問(wèn)題,LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1612次閱讀