亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌Gemma 3n模型的新功能

谷歌開發(fā)者 ? 來源:谷歌開發(fā)者 ? 作者:谷歌開發(fā)者 ? 2025-07-25 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者 / 資深開發(fā)者關(guān)系工程師 Omar Sanseviero 和高級開發(fā)者關(guān)系工程師 Ian Ballantyne

從第一個 Gemma 模型于去年年初推出以來,已逐漸發(fā)展為生機(jī)勃勃的 Gemmaverse 生態(tài)系統(tǒng),累計下載量突破 1.6 億。這個生態(tài)系統(tǒng)包括十余款專業(yè)模型系列,涵蓋從安全防護(hù)到醫(yī)療應(yīng)用的各領(lǐng)域。其中,最令人振奮的是來自社區(qū)的無數(shù)創(chuàng)新。從像 Roboflow 這樣的創(chuàng)新者構(gòu)建的企業(yè)級計算機(jī)視覺,到東京科學(xué)研究所創(chuàng)建的高性能日語 Gemma 變體,各位的作品為我們指明了未來的發(fā)展路徑。

乘此發(fā)展勢頭,我們宣布 Gemma 3n 現(xiàn)已全面發(fā)布。雖然預(yù)覽版已先行展示了一些功能,但這一移動設(shè)備優(yōu)先的架構(gòu)現(xiàn)在能夠發(fā)揮出全部的潛能。Gemma 3n 為幫助塑造了 Gemma 的開發(fā)者社區(qū)而生。包括 Hugging Face Transformers、llama.cpp、Google AI Edge、Ollama 和 MLX 在內(nèi),您熟悉和慣用的多種工具都支持該模型,讓您能輕松針對特定的設(shè)備端應(yīng)用進(jìn)行微調(diào)和部署。本篇文章將以開發(fā)者視角深入探索,介紹 Gemma 3n 背后的一些創(chuàng)新,分享新的基準(zhǔn)測試結(jié)果,并向您展示如何立即開始構(gòu)建。

Gemma 3n 的新功能

Gemma 3n 代表了設(shè)備端 AI 的重大進(jìn)步,為邊緣設(shè)備帶來了強(qiáng)大的多模態(tài)功能;過去,這些性能僅在去年基于云端的一些前沿模型中有所展現(xiàn)。

多模態(tài)設(shè)計: Gemma 3n 原生支持圖像、音頻、視頻和文本輸入以及文本輸出。

針對設(shè)備端優(yōu)化: Gemma 3n 模型的設(shè)計以效率為重點(diǎn),基于有效參數(shù)提供兩種尺寸: E2B 和 E4B。雖然其原始參數(shù)數(shù)量分別為 5B 和 8B,但憑借架構(gòu)創(chuàng)新,它們能夠以媲美傳統(tǒng) 2B 和 4B 模型的內(nèi)存占用運(yùn)行,E2B 僅需 2GB 內(nèi)存、E4B 僅需 3GB 內(nèi)存即可運(yùn)行。

突破性架構(gòu): Gemma 3n 的核心特征包括新穎的組件,如用于計算靈活性的 MatFormer 架構(gòu)、用于內(nèi)存效率的逐層嵌入 (PLE)、用于架構(gòu)效率的 LAuReL 和 AltUp,以及針對設(shè)備端用例優(yōu)化的全新音頻編碼器和基于 MobileNet-v5 的視覺編碼器。

改進(jìn)的質(zhì)量: Gemma 3n 在多語言 (支持 140 種語言的文本和 35 種語言的多模態(tài)理解)、數(shù)學(xué)、編碼和推理方面的質(zhì)量均有提升。E4B 版本的 LMArena 得分超過 1,300,是首個達(dá)到該基準(zhǔn)且參數(shù)低于 100 億的模型。

wKgZPGiC6RqAZHlOAAE0zEObCeQ630.png

有效

https://developers.googleblog.com/zh-hans/introducing-gemma-3n-developer-guide/

要實現(xiàn)這種設(shè)備端性能的飛躍,需要從零開始,對模型進(jìn)行顛覆性的重新構(gòu)思和設(shè)計,其基礎(chǔ)是 Gemma 3n 獨(dú)特的移動設(shè)備優(yōu)先架構(gòu),而這一切都源于 MatFormer。

MatFormer:

一個模型,多種尺寸

Gemma 3n 的核心是 MatFormer (Matryoshka Transformer) 架構(gòu),這是一種專為彈性推理而構(gòu)建的新型嵌套式 Transformer。您可以把它想象成俄羅斯套娃: 一個更大的模型包含著更小、功能齊全的自身版本。這種方法將 Matryoshka 表征學(xué)習(xí)的概念從嵌入層擴(kuò)展到所有 Transformer 組件。

wKgZPGiC6RqAdNMqAADOZEWTjxw758.jpg

MatFormer

https://arxiv.org/abs/2310.07707

Matryoshka 表征學(xué)習(xí)

https://huggingface.co/papers/2205.13147

如上圖所示,在對 4B 有效參數(shù) (E4B) 模型進(jìn)行 MatFormer 訓(xùn)練期間,2B 有效參數(shù) (E2B) 子模型在其內(nèi)部同時得到優(yōu)化。這在當(dāng)下為開發(fā)者提供了兩種強(qiáng)大的功能和用例:

預(yù)提取的模型: 您可以直接下載并使用主 E4B 模型以獲得最高級的功能,也可以使用我們已經(jīng)為您提取的獨(dú)立 E2B 子模型,獲得主模型 2 倍的推理速度。

使用混合匹配 (Mix-n-Match) 自定義調(diào)整尺寸: 為了更精細(xì)地控制以適應(yīng)特定的硬件限制,您可以使用我們稱之為 "混合匹配" 的方法,創(chuàng)建介于 E2B 和 E4B 之間的各種自定義尺寸模型。此技術(shù)允許您精確切分 E4B 模型的參數(shù),主要是通過調(diào)整每層前饋網(wǎng)絡(luò)隱藏維度 (從 8,192 到 16,384) 并選擇性地跳過某些層來實現(xiàn)。我們即將發(fā)布 MatFormer Lab,該工具可演示如何檢索這些最優(yōu)模型,這些模型是在 MMLU 等基準(zhǔn)測試中通過評估多種配置組合而篩選出來的。

wKgZO2iC6RqACFvvAAHDy39rnoU565.png

△ 不同模型尺寸的預(yù)訓(xùn)練 Gemma 3n 檢查點(diǎn)的 MMLU 分?jǐn)?shù) (使用混合匹配)

MatFormer Lab

https://goo.gle/gemma3n-matformer-lab

展望未來,MatFormer 架構(gòu)也為彈性執(zhí)行鋪平了道路。雖然這項能力并非本次發(fā)布實現(xiàn)的一部分,但它允許單個部署的 E4B 模型在 E4B 和 E2B 推理路徑之間動態(tài)切換,從而根據(jù)當(dāng)前任務(wù)和設(shè)備負(fù)載,實時優(yōu)化性能和內(nèi)存用量。

逐層嵌入 (PLE):

解鎖更高的內(nèi)存效率

Gemma 3n 模型包含逐層嵌入 (PLE)。這項創(chuàng)新專為設(shè)備端部署量身定制,它在不增加設(shè)備加速器 (GPU/TPU) 所需的高速內(nèi)存占用量的情況下,顯著提升了模型質(zhì)量。

雖然 Gemma 3n E2B 和 E4B 模型的總參數(shù)量分別為 5B 和 8B,但逐層嵌入 (PLE) 技術(shù)卻能讓這些參數(shù)中的很大一部分 (即與各層相關(guān)的嵌入),在 CPU 上高效地加載和計算。這意味著通常在更為受限的加速器內(nèi)存 (VRAM) 中,只需加載核心 Transformer 權(quán)重 (E2B 約為 2B,E4B 約為 4B)。

wKgZO2iC6RqAPx6QAADQ1da-Bno417.jpg

△ 使用逐層嵌入,您可以在加速器中僅加載約 2B 參數(shù)的情況下使用 Gemma 3n E2B

KV 緩存共享:

更迅速的長上下文處理

對于諸多先進(jìn)的設(shè)備端多模態(tài)應(yīng)用而言,處理長輸入 (例如源自音頻和視頻流的連續(xù)序列) 至關(guān)重要。Gemma 3n 引入了 KV 緩存共享功能,旨在極大縮短流式響應(yīng)應(yīng)用的首個 token 生成時間。

KV 緩存共享優(yōu)化了模型處理初始輸入階段 (通常稱為 "預(yù)填充" 階段) 的方式。將局部注意力和全局注意力中間層的鍵 (Keys) 和值 (Values) 直接與所有頂層共享,與 Gemma 3 4B 相比,預(yù)填充性能顯著提升了 2 倍。這意味著該模型可以比以前更快地注入和理解冗長的提示序列。

音頻理解:

語音轉(zhuǎn)文本和翻譯功能

Gemma 3n 使用基于通用語音模型 (USM) 的高級音頻編碼器。編碼器為每 160ms 的音頻生成一個 token (約每秒 6 個 tokens),然后將其作為輸入集成到語言模型中,從而為模型提供高度精細(xì)的聲音上下文表征。

通用語音模型

https://arxiv.org/abs/2303.01037

這種集成的音頻功能解鎖了設(shè)備端開發(fā)的多種關(guān)鍵特性,包括:

自動語音識別 (ASR): 直接在設(shè)備端實現(xiàn)高質(zhì)量的語音轉(zhuǎn)文字。

自動語音翻譯 (AST): 將口語翻譯成另一種語言的文本。

我們觀察到,對于英語和西班牙語、法語、意大利語及葡萄牙語之間的翻譯,AST 的表現(xiàn)尤為出色,為針對這些語言的應(yīng)用開發(fā)者提供了巨大潛力。對于語音翻譯等任務(wù),利用思維鏈提示可以顯著改進(jìn)結(jié)果。以下是一個示例:

```

user

Transcribe the following speech segment in Spanish, then translate it into English:

model

```

截至文章發(fā)布時,Gemma 3n 編碼器可處理長達(dá) 30 秒的音頻片段。然而,這并不是一個根本上的限制。底層的音頻編碼器是一種流式編碼器,通過額外的長篇格式音頻訓(xùn)練,編碼器可以處理任意長度的音頻。后續(xù)實現(xiàn)將解鎖延遲更低、時間更長的流媒體應(yīng)用。

MobileNet-V5:

最先進(jìn)的全新視覺編碼器

除了集成的音頻功能外,Gemma 3n 還配備了全新的高效視覺編碼器 MobileNet-V5-300M,可為邊緣設(shè)備上的多模態(tài)任務(wù)提供最先進(jìn)的性能。

MobileNet-V5 旨在為受限的硬件賦予靈活性和強(qiáng)大功能,為開發(fā)者提供:

支持多種輸入分辨率: 原生支持 256x256、512x512 和 768x768 像素的分辨率,讓您可以根據(jù)特定應(yīng)用需求平衡性能和細(xì)節(jié)。

廣泛的視覺理解力: 該功能采用海量的多模態(tài)數(shù)據(jù)集協(xié)同訓(xùn)練,擅長各種圖像和視頻理解任務(wù)。

高吞吐量: 在 Google Pixel 上每秒處理幀數(shù)高達(dá) 60 幀,實現(xiàn)設(shè)備端實時視頻分析和交互式體驗。

這種性能水平是通過多項架構(gòu)創(chuàng)新實現(xiàn)的,包括:

MobileNet-V4 模塊的先進(jìn)基礎(chǔ) (包括通用倒置瓶頸和移動 MQA)。

顯著擴(kuò)展的架構(gòu),采用混合深度金字塔模型,其規(guī)模是最大的 MobileNet-V4 變體的 10 倍。

一種新型的多尺度融合 VLM 適配器,可優(yōu)化 token 質(zhì)量,以提高準(zhǔn)確性和效率。

得益于新穎的架構(gòu)設(shè)計和先進(jìn)的蒸餾技術(shù),MobileNet-V5-300M 在 Gemma 3 中的性能大大優(yōu)于基準(zhǔn) SoViT (使用 SigLip 訓(xùn)練,無蒸餾)。在 Google Pixel Edge TPU 上,該編碼器在有量化情況下提速 13 倍 (無量化時為 6.5 倍),所需參數(shù)減少 46%,內(nèi)存占用減少為原來的 1/4,同時在視覺-語言任務(wù)上的準(zhǔn)確性顯著提升。

我們很期待與大家分享該模型的更多研發(fā)工作,后續(xù)即將發(fā)布的 MobileNet-V5 技術(shù)報告將深入探討模型架構(gòu)、數(shù)據(jù)擴(kuò)展策略和先進(jìn)的蒸餾技術(shù)。

與社區(qū)共建

我們始終將 Gemma 3n 的易用性放在首位,也非常榮幸能與眾多杰出的開源開發(fā)者合作,確保模型能在多個熱門工具和平臺得到廣泛支持,其中包括來自 AMD、Axolotl、Docker、Hugging Face、llama.cpp、LMStudio、MLX、NVIDIA、Ollama、RedHat、SGLang、Unsloth 和 vLLM 等團(tuán)隊的貢獻(xiàn)。

這個生態(tài)系統(tǒng)僅僅是開始,這項技術(shù)的真正價值在于用它構(gòu)建的成果。正因如此,我們推出了 "Gemma 3n 挑戰(zhàn)賽",使用 Gemma 3n 獨(dú)特的 On-Device、離線和多模態(tài)能力,打造一款造福世界的產(chǎn)品。即刻參與挑戰(zhàn)賽,提交引人注目的視頻介紹,并通過精妙的演示展現(xiàn)產(chǎn)品的現(xiàn)實影響力,就有機(jī)會贏取 15 萬美元的獎金和精美禮品!歡迎加入挑戰(zhàn),共創(chuàng)美好未來。

開始使用 Gemma 3n

準(zhǔn)備好即刻探索 Gemma 3n 的潛力了嗎?請查收以下攻略:

直接體驗: 只需點(diǎn)擊幾下,即可使用 Google AI Studio 試用 Gemma 3n。Gemma 模型也可以直接從 AI Studio 部署到 Cloud Run。

下載模型: 在 Hugging Face 和 Kaggle 上查找模型權(quán)重。

學(xué)習(xí)&集成: 深入了解我們的綜合文檔,快速將 Gemma 集成到您的項目中,或從我們的推理和微調(diào)指南開始入門。

使用您青睞的設(shè)備端 AI 工具構(gòu)建,包括 Google AI Edge Gallery/LiteRT-LLM、Ollama、MLX、llama.cpp、Docker 和 transformers.js 等。

使用您喜愛的開發(fā)工具: 利用您偏好的工具和框架,包括 Hugging Face Transformers 和 TRL、NVIDIA NeMo Framework、Unsloth 和 LMStudio。

隨心部署: Gemma 3n 提供多種部署選項,包括 Google GenAI API、Vertex AI、SGLang、vLLM 和 NVIDIA API Catalog。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 計算機(jī)
    +關(guān)注

    關(guān)注

    19

    文章

    7732

    瀏覽量

    92479
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    37303

    瀏覽量

    292271
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3622

    瀏覽量

    51558

原文標(biāo)題:深入了解 Gemma 3n: 創(chuàng)新的設(shè)備端 AI 模型

文章出處:【微信號:Google_Developers,微信公眾號:谷歌開發(fā)者】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    谷歌AlphaEarth和維智時空AI大模型的技術(shù)路徑

    谷歌AlphaEarth和維智時空AI大模型在應(yīng)用場景和技術(shù)實現(xiàn)上各有側(cè)重,但兩者在底層技術(shù)理念上存在顯著共性。
    的頭像 發(fā)表于 10-22 14:48 ?308次閱讀

    谷歌推出AI模型Gemma 3 270M

    過去幾個月,Gemma 開放模型系列的發(fā)展是激動人心的。我們推出了 Gemma 3Gemma 3
    的頭像 發(fā)表于 09-11 15:09 ?746次閱讀

    谷歌DeepMind重磅發(fā)布Genie 3,首次實現(xiàn)世界模型實時交互

    電子發(fā)燒友網(wǎng)綜合報道 當(dāng)?shù)貢r間2025年8月5日,谷歌DeepMind正式推出第三代通用世界模型Genie3。這款被英偉達(dá)科學(xué)家Jim Fan譽(yù)為“游戲引擎2.0”的模型,通過單文本提
    的頭像 發(fā)表于 08-13 08:27 ?6363次閱讀

    NVIDIA RTX AI加速FLUX.1 Kontext現(xiàn)已開放下載

    NVIDIA RTX 與 NVIDIA TensorRT 現(xiàn)已加速 Black Forest Labs 的最新圖像生成和編輯模型;此外,Gemma 3n 現(xiàn)可借助 RTX 和 NVIDIA Jetson 加速運(yùn)行。
    的頭像 發(fā)表于 07-16 09:16 ?1553次閱讀

    谷歌Gemma 3n預(yù)覽版全新發(fā)布

    Gemma 3Gemma 3 QAT 的成功發(fā)布之后,我們的先進(jìn)開放模型系列具備了在單一云端或桌面加速器上運(yùn)行的能力,我們正在進(jìn)一
    的頭像 發(fā)表于 06-26 17:18 ?626次閱讀

    樹莓派5上的Gemma 2:如何打造高效的邊緣AI解決方案?

    從數(shù)學(xué)基礎(chǔ)到邊緣實現(xiàn),研究團(tuán)隊:Conecta.ai(ufrn.br)摘要1.引言2.GEMMA2:通用集成機(jī)器模型算法2.1模型架構(gòu)2.2預(yù)訓(xùn)練2.3后訓(xùn)練3.邊緣AI實現(xiàn)1.引言
    的頭像 發(fā)表于 06-20 16:57 ?1220次閱讀
    樹莓派5上的<b class='flag-5'>Gemma</b> 2:如何打造高效的邊緣AI解決方案?

    Google Gemma 3開發(fā)者指南

    自首次推出以來,Gemma 模型的下載量已超過 1 億次,社區(qū)為各種用例創(chuàng)建了超過 60,000 個變體1。我們很高興推出 Gemma 3,這是 G
    的頭像 發(fā)表于 04-08 10:50 ?739次閱讀
    Google <b class='flag-5'>Gemma</b> <b class='flag-5'>3</b>開發(fā)者指南

    Google發(fā)布最新AI模型Gemma 3

    Gemma 開放模型系列是 Google 推動實用 AI 技術(shù)普惠大眾的重要基石。上個月,Gemma 迎來了首個生日?;赝^去一年,其成果斐然:全球下載量突破 1 億,社區(qū)欣欣向榮,衍生模型
    的頭像 發(fā)表于 03-18 09:51 ?1328次閱讀

    性能超Deepseek?谷歌最新模型Gemma3可單GPU運(yùn)行

    行業(yè)芯事行業(yè)資訊
    電子發(fā)燒友網(wǎng)官方
    發(fā)布于 :2025年03月14日 11:52:25

    在龍芯3a6000上部署DeepSeek 和 Gemma2大模型

    run deepseek-r1:1.5b 3.運(yùn)行Gemma 2大模型 如果想體驗 Google Gemma 2 可以到下面的網(wǎng)站選擇不同參數(shù)的大
    發(fā)表于 02-07 19:35

    借助谷歌Gemini和Imagen模型生成高質(zhì)量圖像

    在快速發(fā)展的生成式 AI 領(lǐng)域,結(jié)合不同模型的優(yōu)勢可以帶來顯著的成果。通過利用谷歌的 Gemini 模型來制作詳細(xì)且富有創(chuàng)意的提示,然后使用 Imagen 3
    的頭像 發(fā)表于 01-03 10:38 ?1231次閱讀
    借助<b class='flag-5'>谷歌</b>Gemini和Imagen<b class='flag-5'>模型</b>生成高質(zhì)量圖像

    亞馬遜云科技發(fā)布Amazon Bedrock新功能

    近日,亞馬遜云科技宣布了一項重要更新——為其完全托管的Amazon Bedrock服務(wù)增添了多項創(chuàng)新功能。Amazon Bedrock旨在通過高性能基礎(chǔ)模型,助力用戶輕松構(gòu)建并擴(kuò)展生成式人工智能
    的頭像 發(fā)表于 12-25 15:52 ?691次閱讀

    亞馬遜云科技發(fā)布Amazon S3新功能

    近日,亞馬遜云科技宣布了一項重大更新,為其旗艦產(chǎn)品Amazon Simple Storage Service(簡稱Amazon S3)推出了全新功能。這一創(chuàng)新之舉使得Amazon S3成為首個完全
    的頭像 發(fā)表于 12-20 11:03 ?828次閱讀

    谷歌發(fā)布Gemini 2.0 AI模型

    下文處理技術(shù),能夠更有效地支持用戶在學(xué)術(shù)及專業(yè)領(lǐng)域進(jìn)行深入研究。這一新功能的推出,將為用戶在探索復(fù)雜問題時提供更為精準(zhǔn)和全面的幫助。 目前,Gemini 2.0 Flash體驗版已經(jīng)對所有Gemini用戶開放。同時,谷歌還推出了更為強(qiáng)大的Gemini Advanced版本
    的頭像 發(fā)表于 12-12 10:13 ?881次閱讀

    谷歌計劃12月發(fā)布Gemini 2.0模型

    近日,有消息稱谷歌計劃在12月發(fā)布其下一代人工智能模型——Gemini 2.0。這一消息引發(fā)了業(yè)界的廣泛關(guān)注,因為谷歌在人工智能領(lǐng)域一直保持著領(lǐng)先地位,而Gemini系列模型更是其重要
    的頭像 發(fā)表于 10-29 11:02 ?1337次閱讀