亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過刪除神經(jīng)元理解深度學習

DPVg_AI_era ? 來源:未知 ? 作者:鄧佳佳 ? 2018-03-26 10:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

理解深度神經(jīng)網(wǎng)絡(luò)的運作機制對于幫助我們解釋它們的決定,以及構(gòu)建更強大的系統(tǒng)起到了至關(guān)重要的作用。例如,試想在不了解個體齒輪如何嚙合的情況下去構(gòu)建時鐘會有多么的困難。在神經(jīng)科學和深度學習中,理解神經(jīng)網(wǎng)絡(luò)的一種方法是調(diào)查個體神經(jīng)元所扮演的“角色”,尤其是那些易于解釋的神經(jīng)元。

我們對單一方向泛化的重要性的研究(On the importance of single directions for generalization)即將在第六屆國際學習表征會議 (ICLR)上問世,該研究采用的方法受到數(shù)十年實驗神經(jīng)科學的啟發(fā)– 通過探索刪除神經(jīng)元帶來的影響 – 來確定深度神經(jīng)網(wǎng)絡(luò)中神經(jīng)元小組的重要性,以及相對容易解釋的神經(jīng)元是否對神經(jīng)網(wǎng)絡(luò)的計算更為重要?

我們通過刪除單個神經(jīng)元以及神經(jīng)元小組對其所在的網(wǎng)絡(luò)性能的損害來研究它們的影響力。我們的實驗帶來了兩個令人驚訝的發(fā)現(xiàn):

雖然以前的許多研究都集中于解讀易解釋的單個神經(jīng)元(例如,“貓神經(jīng)元”,或深層網(wǎng)絡(luò)隱藏層中只對貓的圖像有反應的神經(jīng)元),但是我們發(fā)現(xiàn)這些可解釋的神經(jīng)元相對于難懂的,難以解釋其活動的神經(jīng)元來說并沒有更加重要。

能夠?qū)ξ粗獔D像進行正確分類的網(wǎng)絡(luò)比只能對已知圖像進行正確分類的神經(jīng)網(wǎng)絡(luò)更能適應神經(jīng)元的刪除。換句話說,泛性好的網(wǎng)絡(luò)比那些記憶網(wǎng)絡(luò)更少依賴單一方向的輸入。

“貓神經(jīng)元”可能更易于解釋,但它們并不重要

在神經(jīng)科學和深度學習中,對單個輸入類別的圖像(例如狗)作出響應的易于解釋的神經(jīng)元(“選擇性”神經(jīng)元)已經(jīng)得到了廣泛的研究。在深度學習中,這導致了對貓神經(jīng)元,情緒神經(jīng)元和括號神經(jīng)元的強調(diào);在神經(jīng)科學,有詹妮弗安妮斯頓神經(jīng)元研究,等等。然而,這些少數(shù)高選擇性神經(jīng)元相對于大多數(shù)具有低選擇性、更難懂,難以解釋其活動的神經(jīng)元的重要性仍然未知。

具有明顯響應模式(例如,對貓活躍,對其他所有活動不活躍)的神經(jīng)元比看到隨機圖像活躍和不活躍的神經(jīng)元更容易解釋。

為了評估(某個)神經(jīng)元的重要性,我們測量了當該神經(jīng)元被刪除時,神經(jīng)網(wǎng)絡(luò)在圖像分類任務上的表現(xiàn)變化。如果一個神經(jīng)元是非常重要的,刪除它應會對神經(jīng)網(wǎng)絡(luò)產(chǎn)生高度的破壞性,大大降低該網(wǎng)絡(luò)的性能;相反地,刪除一個不重要的神經(jīng)元則應該無法對神經(jīng)網(wǎng)絡(luò)構(gòu)成很大影響。神經(jīng)科學家經(jīng)常進行類似的實驗,然而他們很難達到這些實驗所需的精度,而這精度在人工神經(jīng)網(wǎng)絡(luò)中恰恰容易獲得。

刪除神經(jīng)元對簡單神經(jīng)網(wǎng)絡(luò)影響的直觀圖示。顏色較深的神經(jīng)元更加活躍。嘗試點擊隱藏層中的神經(jīng)元并刪除它們,觀察輸出神經(jīng)元的活動會如何改變。請注意,刪除一個或兩個神經(jīng)元對輸出影響很小,而刪除大部分神經(jīng)元則會對輸出影響很大,并且一些神經(jīng)元比其他神經(jīng)元更重要!

令人驚訝的是,我們發(fā)現(xiàn)選擇性強的神經(jīng)元和重要性之間幾乎沒有關(guān)系。換句話說,“貓神經(jīng)元”并不比難懂神經(jīng)元更加重要。這一發(fā)現(xiàn)與最近在神經(jīng)科學方面的工作相互呼應,即難懂神經(jīng)元實際上可以提供很多信息。我們需將視野拓展到最易于解釋的神經(jīng)元以外來了解深度神經(jīng)網(wǎng)絡(luò)。

“貓神經(jīng)元”可能更易解釋,但它們并不比難懂的沒有明顯偏好的神經(jīng)元更重要。嘗試點擊上圖的二維線畫圖函數(shù),看看重要性和易解釋性之間的關(guān)系!

盡管可解釋的神經(jīng)元在直覺上更容易理解(“它喜歡狗”),但它們并不比難懂的,沒有明顯偏好的神經(jīng)元更重要。

越泛化的神經(jīng)網(wǎng)絡(luò),越難被打破

對于我們正在努力構(gòu)建的智能系統(tǒng)來說,只有當這種系統(tǒng)能夠推廣到對新的情況進行解讀時,我們才能稱之為智能系統(tǒng)。例如,一個圖像分類網(wǎng)絡(luò)如果只能對以前看過的特定狗的圖像進行分類,而不能對同一只狗的新的圖像進行分類的話,那么它是無用的。只有當它可以對新的例子進行智能分類時,這個系統(tǒng)才能展現(xiàn)了它的效用。 一篇由Google Brain,Berkeley大學和DeepMind最近在ICLR 2017上獲得最佳論文的合作論文表明,深度網(wǎng)絡(luò)可以簡單地記住它們接受過培訓的每個圖像,然而卻不能以類人類的方式對圖像進行學習(例如,了解抽象的“狗”概念)。

通常我們不知道網(wǎng)絡(luò)是否已經(jīng)學會了一種能夠推廣到新情況的解決方案。通過逐漸刪除越來越大的神經(jīng)元組,我們發(fā)現(xiàn),相比起對以前訓練期間看到的圖像進行簡單記憶的網(wǎng)絡(luò),泛化良好的網(wǎng)絡(luò)在應對刪除時表現(xiàn)出的穩(wěn)健性要強得多。換句話說,泛化好的網(wǎng)絡(luò)很難被打破(盡管它們肯定還是會被打破的)。

隨著越來越多的神經(jīng)元組被刪除,泛化的網(wǎng)絡(luò)性能的下降速度遠遠低于記憶網(wǎng)絡(luò)的性能。

通過以這種衡量網(wǎng)絡(luò)的穩(wěn)健性的方式,我們可以評估一個網(wǎng)絡(luò)是否在利用記憶來進行“欺騙”。了解網(wǎng)絡(luò)在進行記憶時的變化將有助于我們建立新的網(wǎng)絡(luò),這種網(wǎng)絡(luò)記憶較少,泛化較強。

受到神經(jīng)科學啟發(fā)的分析

總之,這些發(fā)現(xiàn)證明了使用受實驗神經(jīng)科學啟發(fā)的技術(shù)對理解神經(jīng)網(wǎng)絡(luò)的重要作用。通過這些方法,我們發(fā)現(xiàn)選擇性強的個體神經(jīng)元并不一定比不具選擇性的神經(jīng)元更加重要,并且,單個神經(jīng)元對泛化的網(wǎng)絡(luò)的影響比其對單純依靠記憶數(shù)據(jù)訓練出來的網(wǎng)絡(luò)更小。這些結(jié)果意味著單個神經(jīng)元的重要性可能比你乍看上去的要低。

試圖了解所有神經(jīng)元,而不僅僅是那些易于理解的神經(jīng)元的作用可以幫助我們更好地理解神經(jīng)網(wǎng)絡(luò)的內(nèi)部工作,更加重要的是,我們可以利用這種理解來構(gòu)建更加智能和應用廣泛的系統(tǒng)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    12748
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5588

    瀏覽量

    123794

原文標題:DeepMind 最新研究:通過刪除神經(jīng)元理解深度學習

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    激活函數(shù)ReLU的理解與總結(jié)

    具有很強的處理線性不可分機制。那么在深度網(wǎng)絡(luò)中,對非線性的依賴程度就可以縮一縮。一旦神經(jīng)元神經(jīng)元之間改為線性激活,網(wǎng)絡(luò)的非線性部分僅僅來自于神經(jīng)元部分選擇性激活。 對比大腦工作的9
    發(fā)表于 10-31 06:16

    脈沖神經(jīng)元模型的硬件實現(xiàn)

    ;其中配置信息通過 APB 接口配置到神經(jīng)元狀態(tài)存儲模塊和突觸存儲模塊,對神 經(jīng)核使用的神經(jīng)元模型參數(shù),突觸權(quán)重,神經(jīng)元個數(shù)等參數(shù)進行初始化??刂颇K負責安排
    發(fā)表于 10-24 08:27

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    所謂地址事件表達(Address Event Representation,AER),是指通過地址的方式將事件進行表達,然后按時間順序復用到總線上。已知生物神經(jīng)元產(chǎn)生脈沖的頻率比數(shù)字電路要低很多
    發(fā)表于 10-24 07:34

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應性的神經(jīng)網(wǎng)絡(luò)

    神經(jīng)元,但卻能產(chǎn)生復雜的行為。受此啟發(fā),與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)相比,LNN旨在通過模擬大腦中神經(jīng)元之間的動態(tài)連接來處理信息,這種網(wǎng)絡(luò)能夠順序處理數(shù)據(jù),并且保留了對過去輸
    的頭像 發(fā)表于 09-28 10:03 ?442次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)</b>網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應性的<b class='flag-5'>神經(jīng)</b>網(wǎng)絡(luò)

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+神經(jīng)形態(tài)計算、類腦芯片

    。是實現(xiàn)類腦芯片的基本模型。SNN中的神經(jīng)元通過短的電脈沖相互溝通,脈沖之間的時間間隔起著重要作用。 最有利于硬件實現(xiàn)的脈沖神經(jīng)元模型是“漏電整合-激發(fā)”模型: 與DNN相比,SNN的優(yōu)勢與區(qū)別
    發(fā)表于 09-17 16:43

    如何在機器視覺中部署深度學習神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學習的目標檢測可定位已訓練的目標類別,并通過矩形框(邊界框)對其進行標識。 在討論人工智能(AI)或深度學習時,經(jīng)常會出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?571次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>神經(jīng)</b>網(wǎng)絡(luò)

    新一代神經(jīng)擬態(tài)類腦計算機“悟空”發(fā)布,神經(jīng)元數(shù)量超20億

    電子發(fā)燒友網(wǎng)綜合報道 8月2日,浙江大學腦機智能全國重點實驗室發(fā)布新一代神經(jīng)擬態(tài)類腦計算機——Darwin Monkey(中文名“悟空”)。 ? “悟空”堪稱國際首臺神經(jīng)元規(guī)模超20億、基于專用神經(jīng)
    的頭像 發(fā)表于 08-06 07:57 ?7126次閱讀
    新一代<b class='flag-5'>神經(jīng)</b>擬態(tài)類腦計算機“悟空”發(fā)布,<b class='flag-5'>神經(jīng)元</b>數(shù)量超20億

    無刷直流電機單神經(jīng)元自適應智能控制系統(tǒng)

    摘要:針對無刷直流電機(BLDCM)設(shè)計了一種可在線學習的單神經(jīng)元自適應比例-積分-微分(PID)智能控制器,通過有監(jiān)督的 Hebb學習規(guī)則調(diào)整權(quán)值,每次采樣根據(jù)反饋誤差對
    發(fā)表于 06-26 13:36

    無刷直流電機單神經(jīng)元PI控制器的設(shè)計

    刷直流電機單神經(jīng)元PI控制器的設(shè)計.pdf 【免責聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請第一時間告知,刪除內(nèi)容,謝謝!
    發(fā)表于 06-26 13:34

    BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則

    ,僅作為數(shù)據(jù)輸入的接口。輸入層的神經(jīng)元個數(shù)通常與輸入數(shù)據(jù)的特征數(shù)量相對應。 隱藏層 :對輸入信號進行非線性變換,是神經(jīng)網(wǎng)絡(luò)的核心部分,負責學習輸入與輸出之間的復雜映射關(guān)系。隱藏層可以有一層或多層,層數(shù)和
    的頭像 發(fā)表于 02-12 16:41 ?1111次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?1125次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學習的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、
    的頭像 發(fā)表于 02-12 15:15 ?1228次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個
    的頭像 發(fā)表于 01-23 13:52 ?733次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?2313次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學習近年來在多個領(lǐng)域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學習的一個分支,因其在圖像處理
    的頭像 發(fā)表于 11-15 14:52 ?1114次閱讀