亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卟啉螯合配體添加劑作為長效鋅金屬電池的分子篩界面屏障

清新電源 ? 來源:清新電源 ? 2023-10-08 15:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

研究背景

水系鋅金屬二次電池(ZMBs)由于鋅負極的高體積容量(5850 Ah L-1)及高安全性而受到研究者們的青睞。然而,鋅負極與電解液之間差的界面相容性將誘導(dǎo)析氫(HER)并發(fā)生嚴重的界面腐蝕。研究表明,加入電解液成膜添加劑可以在鋅負極表面原位形成固體電解質(zhì)界面(SEI),其在一定程度上可以抑制水的滲透和分解。但電解液添加劑在鋅沉積過程中逐漸消耗,最終將導(dǎo)致電池體系的長期循環(huán)穩(wěn)定性下降。非消耗型電解液添加劑雖然可以優(yōu)先吸附在鋅負極表面并調(diào)節(jié)內(nèi)赫姆霍茲平面(IHP)結(jié)構(gòu);然而,這些添加劑與水分子之間相對較弱的靜電屏蔽效應(yīng)不能完全將水排除在IHP之外,導(dǎo)致持續(xù)的析氫和鈍化。因此,為長壽命的鋅金屬二次電池重新發(fā)明相容性電解液體系仍是一個巨大的挑戰(zhàn)。

成果簡介

近日,清華大學深圳國際研究生院康飛宇教授和周棟助理教授團隊首次報道了一種多功能的“分子篩狀”界面屏障,其可以有效地排除IHP中的水分子,并促進均勻的鋅沉積。該屏障是通過采用微量的四苯基卟啉四磺酸(TPPS)作為電解質(zhì)添加劑構(gòu)建的。親水和親鋅的苯磺酸基團不僅賦予了TPPS的水溶性,使其在鋅陽極上優(yōu)先吸附,還破壞了H2O的分子內(nèi)和分子間氫鍵,有效降低了Zn2+的去溶劑化能。此外,TPPS上的卟啉環(huán)可以與Zn2+螯合配位,這種“分子篩狀”的添加劑發(fā)揮了類似于鋅負極表面的分子篩涂層的作用,而不會降低電池能量密度。結(jié)果表明,TPPS修飾的ZnSO4水系電解液在電流密度為5 mA cm?2下循環(huán)2100次可以實現(xiàn)99.7%的高平均庫倫效率,Zn||MnO2全電池的可逆容量和和循環(huán)穩(wěn)定性也得到大幅提高,析氫和腐蝕現(xiàn)象得到有效抑制。該工作以Tetraphenylporphyrin-based Chelating Ligand Additive as a Molecular Sieving Interfacial Barrier toward Durable Aqueous Zinc Metal Batteries”為題發(fā)表在Angewandte Chemie International Edition上。博士生趙欣為論文第一作者。

研究亮點

(1) 提出了一種非消耗型卟啉螯合配體,實現(xiàn)了鋅負極的長循環(huán)穩(wěn)定性。

(2) 添加劑形成的“分子篩屏障”有利于鋅離子去溶劑化,提高傳輸動力學。

(3) Zn||Cu電池實現(xiàn)了99.7%的高庫倫效率,Zn||MnO2全電池循環(huán)1000圈后容量保持率高達70.8%。

圖文導(dǎo)讀

為了解決鋅金屬負極與電解液相容性差及電解液成膜添加劑在循環(huán)過程中不斷消耗導(dǎo)致鋅金屬電池循環(huán)壽命不理想的問題,引入了非消耗型四苯基卟啉四磺酸(TPPS)螯合配體添加劑。親水和親鋅的苯磺酸基團不僅可以使TPPS具有水溶性,還能使TPPS分子優(yōu)先吸附在鋅負極表面,形成IHP,隔絕水與鋅負極的直接接觸。其次,TPPS分子上的卟啉環(huán)優(yōu)先與Zn2+螯合,有效降低了Zn2+的脫溶劑能,有利于促進界面電荷的快速轉(zhuǎn)移。這種“類分子篩”添加劑的作用類似于鋅負極表面的分子篩涂層,但不會影響電池的能量密度。

42760c32-65ae-11ee-939d-92fbcf53809c.png

圖1. TPPS/ZnSO4電解液的設(shè)計原則。

圖2a為ZnSO4和TPPS/ZnSO4電解液的拉曼光譜。與ZnSO4電解液相比,TPPS/ZnSO4電解液中強氫鍵的比例較低,而弱氫鍵的強度較高,說明TPPS的引入有效地打破了H2O分子間氫鍵的相互作用。TPPS/ZnSO4電解液的核磁共振光譜中1H峰向高場移動,表明Zn原子的去屏蔽作用增強(圖2b)。結(jié)合能計算顯示,比水分子相比,Zn2+更傾向于優(yōu)先與TPPS結(jié)合 (圖2c)。根據(jù)Arrhenius方程計算得到的對應(yīng)活化能Ea如圖2d所示。TPPS/ZnSO4電解液中的Ea值(46.49 kJ mol-1)低于ZnSO4電解液中的Ea值(50.2 kJ mol-1),對應(yīng)于鋅沉積過程中的快速去溶劑化過程。

428d86c8-65ae-11ee-939d-92fbcf53809c.png

圖2. TPPS基電解液的配位環(huán)境及Zn2+去溶劑化行為表征。

LSV測試結(jié)果如圖3a所示,與NaSO4電解質(zhì)(-1.654 V)相比,TPPS的引入導(dǎo)致了更低的初始電位(-1.689 V),表明TPPS抑制了H2O的電化學還原。Tafel曲線(圖3b)表明,ZnSO4和TPPS/ZnSO4電解液的腐蝕電流從2.88 mA cm-2降低到0.79 mA cm-2,說明TPPS添加劑有效抑制了Zn金屬負極的腐蝕。CA曲線(圖3c)顯示, TPPS/ZnSO4電解液中,電流密度瞬態(tài)增加48 s后,Zn電沉積的電流響應(yīng)保持穩(wěn)定,這是由于受限制的二維擴散行為,促進了均勻致密的Zn沉積層。TPPS分子在Zn(002)平面上的吸附能(-0.95 eV)遠大于H2O(-0.12 eV)和Zn原子在Zn(002)平面上的吸附能(-0.42 eV)。這表明TPPS分子優(yōu)先吸附在Zn平面上,作為屏蔽層排出IHP中的游離H2O分子,有效地促進了Zn的均勻沉積(圖3d)。

42a2d398-65ae-11ee-939d-92fbcf53809c.png

圖3. 抗腐蝕性能及Zn2+沉積動力學研究。

圖4a展示了在不同電解液中循環(huán)的Zn||Zn對稱電池的性能。在TPPS/ZnSO4電解液中,電池在1 mA cm-2下的壽命達到了2300 h。而采用ZnSO4電解液的電池循環(huán)360 h后出現(xiàn)微短路。在TPPS/ZnSO4電解液中循環(huán)的Zn||Cu半電池在5 mA cm-2下可以穩(wěn)定循環(huán)2100次,平均CE高達99.7%。相比之下,在ZnSO4電解液中循環(huán)432次后,CE波動迅速,這主要是由于枝晶形成引起的短路。Zn||Cu電池的累積沉積容量遠高于其他文獻報道的水平(圖4c)。經(jīng)過50次循環(huán)后,銅箔的XRD圖譜在8.08°、16.06°和24.44°處出現(xiàn)了一系列明顯的峰,這些峰屬于ZnSO4(OH)6·5H2O(ZHS)界面副反應(yīng)產(chǎn)物。相反,加入TPPS后,沒有發(fā)現(xiàn)ZHS峰,這說明TPPS添加劑的加入可以有效抑制副反應(yīng)的發(fā)生。

42b921de-65ae-11ee-939d-92fbcf53809c.png

圖4. Zn沉積/剝離的電化學行為研究。

原位光學顯微鏡測試(圖5a)表明,在ZnSO4電解液中連續(xù)沉積20 min后,沉積的Zn結(jié)構(gòu)松散,產(chǎn)生了大量的枝晶和氣泡,表明析氫和腐蝕反應(yīng)嚴重。相比之下,鋅在TPPS/ZnSO4電解液中的沉積形貌均勻致密,在沉積60min的過程中沒有出現(xiàn)樹枝狀結(jié)構(gòu)和氣泡(圖5b),說明TPPS促進了Zn的均勻成核和生長。對銅箔表面進行TOF-SIMS分析發(fā)現(xiàn),TPPS/ZnSO4電解液體系中ZnSO4OH的含量急劇下降(圖5c),說明TPPS可以有效減少ZHS副產(chǎn)物的生成。利用原子力顯微鏡(AFM)和開爾文探針力顯微鏡(KPFM)對鋅沉積層表面粗糙度和電場分布進行了表征。ZnSO4電解液體系中循環(huán)后的極片表面電位分布不規(guī)則,高粗糙度的沉積形貌加劇了局部電場的非均勻分布,導(dǎo)致枝晶從表面尖端生長,界面副反應(yīng)加劇。相比之下,在TPPS/ZnSO4電解液,表面高度和電位(圖5f, g)的分布更加平坦,這是由于TPPS在Zn負極的優(yōu)先吸附有效地調(diào)節(jié)了界面電場。

42d20604-65ae-11ee-939d-92fbcf53809c.png

圖5. 鋅沉積表面形貌研究。

為了證明TPPS添加劑的實際可行性,組裝了Zn|| MnO2全電池。倍率性能如圖6a所示。在TPPS/ZnSO4電解液中循環(huán)的電池在0.5、1、2、3、5 A g-1時的容量分別達到210.3、175.7、115.9、88.3和70.2 mAh g-1,遠高于在ZnSO4電解液中獲得的容量。當電流密度回到0.5 A g-1時,實現(xiàn)了190.6 mAh g-1的高容量,說明了基于TPPS的電池具有出色的可逆性。添加ZnSO4電解液的電池的初始放電容量為203.9 mAh g-1,在第50次循環(huán)時急劇下降到92.92 mAh g-1(圖6c)。這種容量衰減可歸因于副產(chǎn)物在Zn表面的持續(xù)積累,從而顯著惡化了界面電荷轉(zhuǎn)移。以TPPS/ZnSO4為電解液時,循環(huán)穩(wěn)定性顯著提高。即使在1000次循環(huán)后,也實現(xiàn)了70.8%的高容量保持,遠遠優(yōu)于ZnSO4電解液(29.4%)。從圖6d的S 2p光譜可以看出,166.6 eV的HSO3-峰歸因于吸附的TPPS添加劑。

可以看出,在循環(huán)過程中沒有檢測到明顯的峰強度變化或附加的特征峰,驗證了TPPS添加劑的非消耗特性。當全電池的N/P比為2.6時,初始容量為2.61 mAh cm-2,在0.2 A g-1下循環(huán)200次后容量保持在77.8%以上。與此形成鮮明對比的是,在這種高負載水平下,使用ZnSO4電解液的電池在100次循環(huán)后容量保持率為56%(圖6e)。采用氣相色譜-質(zhì)譜儀(GCMS)對軟包電池循環(huán)過程中的氣體進行定量分析,可以看出,經(jīng)過50次循環(huán)后,ZnSO4電解液中大量生成氫氣,并出現(xiàn)了的體積膨脹和大量的腐蝕坑。而使用TPPS/ZnSO4電解質(zhì)的軟包電池在循環(huán)50次后,厚度變化僅為5.3%,腐蝕現(xiàn)象得到明顯改善(圖6f-h)。

42eb1c52-65ae-11ee-939d-92fbcf53809c.png

圖6. Zn||MnO2全電池性能表征。







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋅電池
    +關(guān)注

    關(guān)注

    0

    文章

    37

    瀏覽量

    8141
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    826

    瀏覽量

    21196
  • 電解液
    +關(guān)注

    關(guān)注

    10

    文章

    868

    瀏覽量

    23694
  • 二次電池
    +關(guān)注

    關(guān)注

    0

    文章

    40

    瀏覽量

    10011

原文標題:?清華康飛宇&周棟教授團隊:卟啉螯合配體添加劑作為長效鋅金屬電池的分子篩界面屏障

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    金屬電池穩(wěn)定性能:解決固態(tài)電池界面失效的新策略

    ,成功解決了這一難題。界面空隙:固態(tài)電池的致命弱點MillennialLithium在傳統(tǒng)鋰金屬陽極中,尤其是在低堆壓條件下進行鋰剝離時,會形成不可逆的空隙。這些空隙
    的頭像 發(fā)表于 10-23 18:02 ?1126次閱讀
    鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>穩(wěn)定性能:解決固態(tài)<b class='flag-5'>電池</b><b class='flag-5'>界面</b>失效的新策略

    分子級設(shè)計破解固-固界面難題!中科院金屬所固態(tài)鋰電池新突破

    電子發(fā)燒友網(wǎng)綜合報道 近期,中國科學院金屬研究所的科研團隊近日在固態(tài)鋰電池領(lǐng)域取得了新突破,相關(guān)論文在線發(fā)表于國際權(quán)威期刊《先進材料》(Advanced Materials)。該工作針對“固-固界面
    的頭像 發(fā)表于 10-18 08:44 ?4680次閱讀

    基于改進傳輸線法(TLM)的金屬 - 氧化半導(dǎo)體界面電阻分析

    傳輸線方法(TLM)作為常見的電阻測量技術(shù),廣泛應(yīng)用于半導(dǎo)體器件中溝道電阻與接觸電阻的提取。傳統(tǒng)的TLM模型基于理想歐姆接觸假設(shè),忽略了界面缺陷、勢壘等非理想因素引入的界面電阻,尤其在氧化物半導(dǎo)體如
    的頭像 發(fā)表于 09-29 13:43 ?252次閱讀
    基于改進傳輸線法(TLM)的<b class='flag-5'>金屬</b> - 氧化<b class='flag-5'>鋅</b>半導(dǎo)體<b class='flag-5'>界面</b>電阻分析

    QV0201~0603E系列ESD靜電防護貼片壓敏電阻介紹

    QV0201~0603E系列ESD靜電防護貼片壓敏電阻介紹:氧化壓敏電阻是一種以氧化為主體、添加多種金屬氧化物為添加劑、經(jīng)過空氣中高溫燒
    的頭像 發(fā)表于 08-15 14:29 ?242次閱讀
    QV0201~0603E系列ESD靜電防護貼片壓敏電阻介紹

    共聚焦顯微鏡揭示:負極表面結(jié)構(gòu)制造及在離子電池中的應(yīng)用研究

    水系離子電池(ZIBs)因成本低、安全性高、環(huán)境友好等優(yōu)勢,成為極具潛力的新型電化學儲能裝置,但負極的枝晶生長、腐蝕等問題嚴重制約其發(fā)展。精準解析負極表面結(jié)構(gòu)對優(yōu)化其性能至關(guān)重要
    的頭像 發(fā)表于 08-14 18:05 ?759次閱讀
    共聚焦顯微鏡揭示:<b class='flag-5'>鋅</b>負極表面結(jié)構(gòu)制造及在<b class='flag-5'>鋅</b>離子<b class='flag-5'>電池</b>中的應(yīng)用研究

    干法 vs 濕法工藝:全固態(tài)鋰電池復(fù)合正極中粘結(jié)分布與電荷傳輸機制

    研究背景全固態(tài)鋰電池因其高能量密度和安全性成為電動汽車電池的有力候選者。然而,聚合物粘結(jié)作為離子絕緣體,可能對復(fù)合正極中的電荷傳輸產(chǎn)生不利影響,從而影響
    的頭像 發(fā)表于 08-11 14:54 ?917次閱讀
    干法 vs 濕法工藝:全固態(tài)鋰<b class='flag-5'>電池</b>復(fù)合正極中粘結(jié)<b class='flag-5'>劑</b>分布與電荷傳輸機制

    鋰離子電池化成機理:從分子界面工程到量產(chǎn)工藝的核心解析

    鋰離子電池的化成(Formation)是電池制造中至關(guān)重要的激活步驟,其本質(zhì)是通過首次充放電在電極表面建立穩(wěn)定的電化學界面,并完成電池內(nèi)部材料的初始化。這一過程不僅決定了
    的頭像 發(fā)表于 08-05 17:49 ?750次閱讀
    鋰離子<b class='flag-5'>電池</b>化成機理:從<b class='flag-5'>分子</b><b class='flag-5'>界面</b>工程到量產(chǎn)工藝的核心解析

    頗具潛力的電池

    采用水系電解液,避免傳統(tǒng)鋰電池的易燃易爆風險, 因此 極端條件下仍 能保持穩(wěn)定。并且 資源儲量豐富(地殼含量約0.02%),原材料成本僅為鋰電池的30%-40% 。同時 不含鉛、鎘等重金屬
    的頭像 發(fā)表于 03-02 00:04 ?4081次閱讀
    頗具潛力的<b class='flag-5'>鋅</b>基<b class='flag-5'>電池</b>

    浙江大學陸俊團隊最新EES研究

    水系金屬電池(AZMBs)因其資源豐富、體積容量高(5855 mAh cm-3)和適宜的氧化還原電位(-0.76 V vs. 標準氫電極)而受到廣泛關(guān)注。然而,水作為溶劑會引發(fā)
    的頭像 發(fā)表于 02-12 11:40 ?947次閱讀

    晶硅切割液潤濕用哪種類型?

    解鎖晶硅切割液新活力 ——[麥爾化工] 潤濕 晶硅切割液中,潤濕對切割效果影響重大。[麥爾化工] 潤濕作為廠家直銷產(chǎn)品,價格優(yōu)勢明顯,品質(zhì)有保障,供貨穩(wěn)定。 你們用的那種類型?歡
    發(fā)表于 02-07 10:06

    研究論文::乙烯碳酸酯助力聚合物電解質(zhì)升級,提升高電壓鋰金屬電池性能

    1、 導(dǎo)讀 >> ? ? 該研究探討了乙烯碳酸酯(VC)添加劑在聚丙烯酸酯(PEA)基固態(tài)聚合物電解質(zhì)中的作用。結(jié)果表明,VC添加劑顯著提升了電解質(zhì)的鋰離子電導(dǎo)率和遷移數(shù),同時提高了鋰金屬負極和高
    的頭像 發(fā)表于 01-15 10:49 ?1123次閱讀
    研究論文::乙烯碳酸酯助力聚合物電解質(zhì)升級,提升高電壓鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>性能

    p-π共軛有機界面層助力鈉金屬電池穩(wěn)定運行

    研究背景 由于天然豐度高、電位適中、理論容量高(1166 mAh g-1),鈉金屬負極被認為是有前途的下一代可充電池負極材料的有力候選者。然而,在傳統(tǒng)有機電解液中形成的固體電解質(zhì)界面(SEI)微觀
    的頭像 發(fā)表于 01-14 10:43 ?1030次閱讀
    p-π共軛有機<b class='flag-5'>界面</b>層助力鈉<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>穩(wěn)定運行

    王東海最新Nature Materials:全固態(tài)鋰硫電池新突破

    的利用率較低,反應(yīng)動力學較為緩慢。為克服這些局限性,科學家們嘗試通過設(shè)計導(dǎo)電添加劑、優(yōu)化電解質(zhì)界面和提升界面結(jié)構(gòu)來改善電池性能。然而,這些策略未能根本性改變固態(tài)硫轉(zhuǎn)化反應(yīng)對三相
    的頭像 發(fā)表于 01-09 09:28 ?1638次閱讀
    王東海最新Nature Materials:全固態(tài)鋰硫<b class='flag-5'>電池</b>新突破

    SOLIDWORKS 2025 裝配體功能

    SOLIDWORKS作為機械設(shè)計領(lǐng)域的軟件,一直致力于通過持續(xù)的技術(shù)創(chuàng)新和功能升級,幫助設(shè)計師和工程師更有效地完成復(fù)雜的設(shè)計任務(wù)。在新的SOLIDWORKS 2025版本中,裝配體功能得到了顯著增強,不僅提升了處理大型復(fù)雜裝配體
    的頭像 發(fā)表于 12-16 15:28 ?971次閱讀

    離子液體添加劑用于高壓無負極鋰金屬電池

    ? ? ? ?研究背景 基于雙(氟磺?;啺蜂嚕↙iFSI)的濃縮電解質(zhì)已被提出作為無負極鋰金屬電池(AFLMB)的有效鋰兼容電解質(zhì)。然而在游離溶劑分子較少、FSI陰離子顯著增加的
    的頭像 發(fā)表于 12-10 11:00 ?1914次閱讀
    離子液體<b class='flag-5'>添加劑</b>用于高壓無負極鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>