亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

干貨速來!詳析卷積神經網(wǎng)絡(CNN)的特性和應用

analog_devices ? 來源:未知 ? 2023-03-27 22:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

前文《卷積神經網(wǎng)絡簡介:什么是機器學習?》中,我們比較了在微控制器中運行經典線性規(guī)劃程序與運行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡,該網(wǎng)絡可以對圖像中的貓、房子或自行車等對象進行分類,還可以執(zhí)行簡單的語音識別。本文重點解釋如何訓練這些神經網(wǎng)絡以解決實際問題。

01 神經網(wǎng)絡的訓練過程

前文中討論的CIFAR網(wǎng)絡由不同層的神經元組成。如圖1所示,32 × 32像素的圖像數(shù)據(jù)被呈現(xiàn)給網(wǎng)絡并通過網(wǎng)絡層傳遞。CNN處理過程的第一步就是提取待區(qū)分對象的特性和結構,這需要借助濾波器矩陣實現(xiàn)。設計人員對CIFAR網(wǎng)絡進行建模后,由于最初無法確定這些濾波器矩陣,因此這個階段的網(wǎng)絡無法檢測模式和對象。

為此,首先需要確定濾波器矩陣的所有參數(shù),以最大限度地提高檢測對象的精度或最大限度地減少損失函數(shù)。這個過程就稱為神經網(wǎng)絡訓練。前文所描述的常見應用在開發(fā)和測試期間只需對網(wǎng)絡進行一次訓練就可以使用,無需再調整參數(shù)。如果系統(tǒng)對熟悉的對象進行分類,則無需額外訓練;當系統(tǒng)需要對全新的對象進行分類時,才需要額外進行訓練。

進行網(wǎng)絡訓練需要使用訓練數(shù)據(jù)集,并使用類似的一組測試數(shù)據(jù)集來測試網(wǎng)絡的精度。例如CIFAR-10網(wǎng)絡數(shù)據(jù)集為十個對象類的圖像集合:飛機、汽車、鳥、貓、鹿、狗、青蛙、馬、輪船和卡車。我們必須在訓練CNN之前對這些圖像進行命名,這也是人工智能應用開發(fā)過程中最為復雜的部分。本文討論的訓練過程采用反向傳播的原理,即向網(wǎng)絡連續(xù)展示大量圖像,并且每次都同時傳送一個目標值。本例的目標值為圖像中相關的對象類。在每次顯示圖像時,濾波器矩陣都會被優(yōu)化,這樣對象類的目標值就會和實際值相匹配。完成此過程的網(wǎng)絡就能夠檢測出訓練期間從未看到過的圖像中的對象。

954a4b9c-ccae-11ed-bfe3-dac502259ad0.svg

圖1.CIFAR CNN架構。

95612b6e-ccae-11ed-bfe3-dac502259ad0.svg

圖2.由前向傳播和反向傳播組成的訓練循環(huán)。

02 過擬合和欠擬合

在神經網(wǎng)絡的建模過程中經常會出現(xiàn)的問題是:神經網(wǎng)絡應該有多少層,或者是神經網(wǎng)絡的濾波器矩陣應該有多大?;卮疬@個問題并非易事,因此討論網(wǎng)絡的過擬合和欠擬合至關重要。過擬合由模型過于復雜以及參數(shù)過多而導致。我們可以通過比較訓練數(shù)據(jù)集和測試數(shù)據(jù)集的損失來確定預測模型與訓練數(shù)據(jù)集的擬合程度。如果訓練期間損失較低并且在向網(wǎng)絡呈現(xiàn)從未顯示過的測試數(shù)據(jù)時損失過度增加,這就強烈表明網(wǎng)絡已經記住了訓練數(shù)據(jù)而不是在實施模式識別。此類情況主要發(fā)生在網(wǎng)絡的參數(shù)存儲空間過大或者網(wǎng)絡的卷積層過多的時候。這種情況下應當縮小網(wǎng)絡規(guī)模。

03 損失函數(shù)和訓練算法

學習分兩個步驟進行。第一步,向網(wǎng)絡展示圖像,然后由神經元網(wǎng)絡處理這些圖像生成一個輸出矢量。輸出矢量的最大值表示檢測到的對象類,例如示例中的"狗",該值不一定是正確的。這一步稱為前向傳播。

目標值與輸出時產生的實際值之間的差值稱為損失,相關函數(shù)則稱為損失函數(shù)。網(wǎng)絡的所有要素和參數(shù)均包含在損失函數(shù)中。神經網(wǎng)絡的學習過程旨在以最小化損失函數(shù)的方式定義這些參數(shù)。這種最小化可通過反向傳播的過程實現(xiàn)。在反向傳播的過程中,輸出產生的偏置(損失 = 目標值-實際值)通過網(wǎng)絡的各層反饋,直至達到網(wǎng)絡的起始層。

因此,前向傳播和反向傳播在訓練過程中產生了一個可以逐步確定濾波器矩陣參數(shù)的循環(huán)。這種循環(huán)過程會不斷重復,直至損失值降至一定程度以下。

04 優(yōu)化算法、梯度和梯度下降法

為說明訓練過程,圖3顯示了一個包含x和y兩個參數(shù)的損失函數(shù)的示例,這里z軸對應于損失。如果我們仔細查看該損失函數(shù)的三維函數(shù)圖,我們就會發(fā)現(xiàn)這個函數(shù)有一個全局最小值和一個局部最小值。

目前,有大量數(shù)值優(yōu)化算法可用于確定權重和偏置。其中,梯度下降法最為簡單。梯度下降法的理念是使用梯度算子在逐步訓練的過程中找到一條通向全局最小值的路徑,該路徑的起點從損失函數(shù)中隨機選擇。梯度算子是一個數(shù)學運算符,它會在損失函數(shù)的每個點生成一個梯度矢量。該矢量的方向指向函數(shù)值變化最大的方向,幅度對應于函數(shù)值的變化程度。在圖3的函數(shù)中,右下角(紅色箭頭處)由于表面平坦,因此梯度矢量的幅度較小。而接近峰值時的情況則完全不同。此處矢量(綠色箭頭)的方向急劇向下,并且由于此處高低差明顯,梯度矢量的幅度也較大。

957cdd8c-ccae-11ed-bfe3-dac502259ad0.svg

圖3.使用梯度下降法確定到最小值的不同路徑。

因此我們可以利用梯度下降法從任意選定的起點開始以迭代的方式尋找下降至山谷的最陡峭路徑。這意味著優(yōu)化算法會在起點計算梯度,并沿最陡峭的下降方向前進一小步。之后算法會重新計算該點的梯度,繼續(xù)尋找創(chuàng)建一條從起點到山谷的路徑。這種方法的問題在于起點并非是提前定義的,而是隨機選擇的。在我們的三維地圖中,某些細心的讀者會將起點置于函數(shù)圖左側的某個位置,以確保路徑的終點為全局最小值(如藍色路徑所示)。其他兩個路徑(黃色和橙色)要么非常長,要么終點位于局部最小值。但是,算法必須對成千上萬個參數(shù)進行優(yōu)化,顯然起點的選擇不可能每次都碰巧正確。在具體實踐中,這種方法用處不大。因為所選擇的起點可能會導致路徑(即訓練時間)較長,或者目標點并不位于全局最小值,導致網(wǎng)絡的精度下降。

因此,為避免上述問題,過去幾年已開發(fā)出大量可作為替代的優(yōu)化算法。一些替代的方法包括隨機梯度下降法、動量法、AdaGrad方法、RMSProp方法、Adam方法等。鑒于每種算法都有其特定的優(yōu)缺點,實踐中具體使用的算法將由網(wǎng)絡開發(fā)人員決定。

05 訓練數(shù)據(jù)

在訓練過程中,我們會向網(wǎng)絡提供標有正確對象類的圖像,如汽車、輪船等。本例使用了已有的 CIFAR-10 dataset。當然,在具體實踐中,人工智能可能會用于識別貓、狗和汽車之外的領域。這可能需要開發(fā)新應用,例如檢測制造過程中螺釘?shù)馁|量必須使用能夠區(qū)分好壞螺釘?shù)挠柧殧?shù)據(jù)對網(wǎng)絡進行訓練。創(chuàng)建此類數(shù)據(jù)集極其耗時費力,往往是開發(fā)人工智能應用過程中成本最高的一步。編譯完成的數(shù)據(jù)集分為訓練數(shù)據(jù)集和測試數(shù)據(jù)集。訓練數(shù)據(jù)集用于訓練,而測試數(shù)據(jù)則用于在開發(fā)過程的最后檢查訓練好的網(wǎng)絡的功能。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 亞德諾
    +關注

    關注

    6

    文章

    4680

    瀏覽量

    16562

原文標題:干貨速來!詳析卷積神經網(wǎng)絡(CNN)的特性和應用

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    CNN卷積神經網(wǎng)絡設計原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經網(wǎng)絡時的梯度耗散問題。當x>0 時,梯度恒為1,無梯度耗散問題,收斂快;當x<0 時,該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經網(wǎng)絡庫使用介紹

    (q7_t) 和 16 位整數(shù) (q15_t)。 卷積神經網(wǎng)絡示例: 本示例中使用的 CNN 基于來自 Caffe 的 CIFAR-10 示例。神經網(wǎng)絡由 3 個
    發(fā)表于 10-29 06:08

    構建CNN網(wǎng)絡模型并優(yōu)化的一般化建議

    整個模型非常巨大。所以要想實現(xiàn)輕量級的CNN神經網(wǎng)絡模型,首先應該避免嘗試單層神經網(wǎng)絡。 2)減少卷積核的大?。?b class='flag-5'>CNN
    發(fā)表于 10-28 08:02

    卷積運算分析

    的數(shù)據(jù),故設計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運算. 卷積運算:不同于數(shù)學當中提及到的卷積概念,CNN神經網(wǎng)絡中的
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓練神經網(wǎng)絡模型的一些經驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓練一個卷積神經網(wǎng)絡CNN)模型,用于手寫數(shù)字識別。一旦模型被訓練并保存,就可以用于對新圖像進行推理和預測。要使用生成的模型進行推理,可以按照以下步驟進行操作: 1.
    發(fā)表于 10-22 07:03

    CICC2033神經網(wǎng)絡部署相關操作

    讀取。接下來需要使用擴展指令,完成神經網(wǎng)絡的部署,此處僅對第一層卷積+池化的部署進行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權重數(shù)據(jù)、輸入數(shù)據(jù)導入硬件加速器內。對于權重
    發(fā)表于 10-20 08:00

    自動駕駛感知系統(tǒng)中卷積神經網(wǎng)絡原理的疑點分析

    背景 卷積神經網(wǎng)絡(Convolutional Neural Networks, CNN)的核心技術主要包括以下幾個方面:局部連接、權值共享、多卷積核以及池化。這些技術共同作用,使得
    的頭像 發(fā)表于 04-07 09:15 ?569次閱讀
    自動駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經網(wǎng)絡</b>原理的疑點分析

    BP神經網(wǎng)絡卷積神經網(wǎng)絡的比較

    多層。 每一層都由若干個神經元構成,神經元之間通過權重連接。信號在神經網(wǎng)絡中是前向傳播的,而誤差是反向傳播的。 卷積神經網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1149次閱讀

    卷積神經網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?988次閱讀

    卷積神經網(wǎng)絡的參數(shù)調整方法

    卷積神經網(wǎng)絡因其在處理具有空間層次結構的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設置。參數(shù)調整是一個復雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡
    的頭像 發(fā)表于 11-15 15:10 ?1709次閱讀

    使用卷積神經網(wǎng)絡進行圖像分類的步驟

    使用卷積神經網(wǎng)絡CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標 :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及數(shù)據(jù)的類型
    的頭像 發(fā)表于 11-15 15:01 ?1191次閱讀

    卷積神經網(wǎng)絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發(fā)展,卷積神經網(wǎng)絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?1107次閱讀

    卷積神經網(wǎng)絡與傳統(tǒng)神經網(wǎng)絡的比較

    在深度學習領域,神經網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網(wǎng)絡(CNNs)和傳統(tǒng)神經網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2327次閱讀

    深度學習中的卷積神經網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網(wǎng)絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:52 ?1124次閱讀

    卷積神經網(wǎng)絡的基本原理與算法

    卷積神經網(wǎng)絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網(wǎng)絡(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?2338次閱讀