亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是什么關(guān)系

wFVr_Hardware_1 ? 來(lái)源:硬十AI ? 作者:硬十AI ? 2022-10-11 15:07 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

什么是學(xué)習(xí)?

機(jī)器學(xué)習(xí)深度學(xué)習(xí)中都有“學(xué)習(xí)”兩字,我們首先要理解什么是“學(xué)習(xí)”。著名的赫伯特·西蒙教授(Herbert Simon)是1975年圖靈獎(jiǎng)獲得者、1978年諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者,這位大牛曾對(duì)“學(xué)習(xí)”下過(guò)一個(gè)定義“如果一個(gè)系統(tǒng),能夠通過(guò)執(zhí)行某個(gè)過(guò)程,就此改進(jìn)了它的性能,那么這個(gè)過(guò)程就是學(xué)習(xí)”。大師永遠(yuǎn)都是言簡(jiǎn)意賅,一針見(jiàn)血,我們從西蒙教授下的定義可以看出“學(xué)習(xí)的核心目的就是改善性能”。

其實(shí)不僅僅是對(duì)于機(jī)器,對(duì)于人而言這個(gè)定義也是適用的。我們從小就被教育要“好好學(xué)習(xí),天天向上”,我們“學(xué)習(xí)”的目標(biāo)是為了“向上”,如果沒(méi)有性能上的“向上”,即使非常辛苦地“好好”,即使長(zhǎng)時(shí)間地“天天”,都無(wú)法算作“學(xué)習(xí)”。如果我們僅僅是低層次的重復(fù)性學(xué)習(xí),而沒(méi)有達(dá)到認(rèn)知升級(jí)的目的,那么即使表面看起來(lái)非常勤奮,其實(shí)也只是一個(gè)“偽學(xué)習(xí)者”,因?yàn)槲覀儧](méi)有改善性能。

下面我們就一起繼續(xù)“好好學(xué)習(xí)”機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的知識(shí),我們目的就是為了提升自己在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)上的認(rèn)知水平。

2、人工智能、機(jī)器學(xué)習(xí)、和深度學(xué)習(xí)是什么關(guān)系?

先拋出結(jié)論,機(jī)器學(xué)習(xí)(Machine Learning,ML)是人工智能(Artificial Intelligence,AI)的一個(gè)分支,深度學(xué)習(xí)(Deep Learning,DL)是ML中的一個(gè)子集,或者說(shuō),機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的一種方法,而深度學(xué)習(xí)僅僅是實(shí)現(xiàn)機(jī)器學(xué)習(xí)的一種技術(shù)。

02df2466-491f-11ed-a3b6-dac502259ad0.png

下面我們來(lái)仔仔細(xì)細(xì)“學(xué)習(xí)”一下AI、ML、DL這三個(gè)概念

(1)人工智能:AI表示機(jī)器模仿人類(lèi)通常表現(xiàn)出的智能行為的任何活動(dòng),這是一個(gè)非常大的研究領(lǐng)域,機(jī)器旨在復(fù)制認(rèn)知能力,例如學(xué)習(xí)行為、與環(huán)境的主動(dòng)交互、推理和演繹、計(jì)算機(jī)視覺(jué)語(yǔ)音識(shí)別、問(wèn)題求解、知識(shí)表示和感知;AI建立在計(jì)算機(jī)科學(xué)、數(shù)學(xué)和統(tǒng)計(jì)學(xué)以及心理學(xué)和其他研究人類(lèi)行為的科學(xué)的基礎(chǔ)上。建立AI有多種策略,在20世紀(jì)70年代和20世紀(jì)80年代,“專(zhuān)家”系統(tǒng)變得非常流行,這些系統(tǒng)的目標(biāo)是通過(guò)用大量手動(dòng)定義的if-then規(guī)則表示知識(shí)來(lái)解決復(fù)雜的問(wèn)題,這種方法適用于非常特定的領(lǐng)域中的小問(wèn)題,但無(wú)法擴(kuò)展到較大的問(wèn)題和多領(lǐng)域中,后來(lái)AI也在不斷的改進(jìn),越來(lái)越關(guān)注基于統(tǒng)計(jì)的方法。

(2)機(jī)器學(xué)習(xí):ML是AI的一個(gè)子學(xué)科,專(zhuān)注于教授計(jì)算機(jī)如何對(duì)特定任務(wù)進(jìn)行學(xué)習(xí)而無(wú)須編程,ML背后的關(guān)鍵思想是可以創(chuàng)建從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)的算法。機(jī)器學(xué)習(xí)也分好多種,我們向大家介紹一下有監(jiān)督學(xué)習(xí),無(wú)監(jiān)督學(xué)習(xí),增強(qiáng)學(xué)習(xí)這幾種。

有監(jiān)督學(xué)習(xí),向機(jī)器提供輸入數(shù)據(jù)及期望輸出,目的是從這些訓(xùn)練實(shí)例中學(xué)習(xí),以使機(jī)器可以對(duì)從未見(jiàn)過(guò)的數(shù)據(jù)做出有意義的預(yù)測(cè)。

無(wú)監(jiān)督學(xué)習(xí),僅向機(jī)器提供輸入數(shù)據(jù),機(jī)器隨后必須自己尋找一些有意義的結(jié)構(gòu),而無(wú)須外部監(jiān)督或輸入。

增強(qiáng)學(xué)習(xí),機(jī)器充當(dāng)代理,與環(huán)境交互。如果機(jī)器的行為符合要求,就會(huì)有“獎(jiǎng)勵(lì)”;否則,就會(huì)受到“懲罰”,機(jī)器試圖通過(guò)學(xué)習(xí)相應(yīng)地發(fā)展其行為來(lái)最大化獎(jiǎng)勵(lì)。

(3)深度學(xué)習(xí):DL也是機(jī)器學(xué)習(xí)的一個(gè)子集,深度學(xué)習(xí)與傳統(tǒng)的監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)是有區(qū)分的,深度學(xué)習(xí)是高度數(shù)據(jù)依賴(lài)型的算法,它的性能通常是隨著數(shù)據(jù)量的增加而不斷增強(qiáng)的,也就是說(shuō)深度學(xué)習(xí)的可擴(kuò)展性顯著優(yōu)于傳統(tǒng)的機(jī)器學(xué)習(xí)算法,但前提是有足夠多、足夠好的數(shù)據(jù)。

3、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的發(fā)展經(jīng)過(guò)了哪幾個(gè)階段? 如前文討論的,作為人工智能的重要分支,機(jī)器學(xué)習(xí)主要研究的是如何使機(jī)器通過(guò)識(shí)別和利用現(xiàn)有知識(shí)來(lái)獲取新知識(shí)和新技能。自20世紀(jì)80年代以來(lái),機(jī)器學(xué)習(xí)已經(jīng)在算法、理論和應(yīng)用等方面都取得巨大成功,而被廣泛應(yīng)用于產(chǎn)業(yè)界與學(xué)術(shù)界。簡(jiǎn)單來(lái)說(shuō),機(jī)器學(xué)習(xí)就是通過(guò)算法使得機(jī)器能從大量歷史數(shù)據(jù)中學(xué)習(xí)規(guī)律,從而對(duì)新的樣本完成智能識(shí)別或?qū)ξ磥?lái)做預(yù)測(cè);而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支和新的研究領(lǐng)域。如今在大數(shù)據(jù)的背景下可用數(shù)據(jù)量的激增、計(jì)算能力的增強(qiáng)以及計(jì)算成本的降低為深度學(xué)習(xí)的進(jìn)一步發(fā)展提供了平臺(tái),同時(shí)也為深度學(xué)習(xí)在各大領(lǐng)域中的應(yīng)用提供了支撐。 回顧歷史機(jī)器學(xué)習(xí)的發(fā)展歷程大致可以分為五個(gè)時(shí)期,而伴隨著機(jī)器學(xué)習(xí)的發(fā)展,深度學(xué)習(xí)共出現(xiàn)三次浪潮。我們以機(jī)器學(xué)習(xí)的發(fā)展作為主線來(lái)介紹不同時(shí)期機(jī)器學(xué)習(xí)與深度學(xué)習(xí)之間的關(guān)系。

第一個(gè)時(shí)期從20世紀(jì)50年代持續(xù)至20世紀(jì)70年代,由于在此期間研究人員致力于用數(shù)學(xué)證明機(jī)器學(xué)習(xí)的合理性,因此稱(chēng)之為“推理期”。在此期間深度學(xué)習(xí)的雛形出現(xiàn)在控制論中,隨著生物學(xué)習(xí)理論的發(fā)展與第一個(gè)模型的實(shí)現(xiàn)(感知機(jī),1958年),其能實(shí)現(xiàn)單個(gè)神經(jīng)元的訓(xùn)練,這是深度學(xué)習(xí)的第一次浪潮。

第二個(gè)時(shí)期從20世紀(jì)70年代持續(xù)至20世紀(jì)80年代,由于在這個(gè)階段機(jī)器學(xué)習(xí)專(zhuān)家認(rèn)為機(jī)器學(xué)習(xí)就是讓機(jī)器獲取知識(shí),因此稱(chēng)之為“知識(shí)期”,在此期間深度學(xué)習(xí)主要表現(xiàn)在機(jī)器學(xué)習(xí)中基于神經(jīng)網(wǎng)絡(luò)的連接主義。

第三個(gè)時(shí)期從20世紀(jì)80年代持續(xù)至20世紀(jì)90年代,這個(gè)時(shí)期的機(jī)器學(xué)習(xí)專(zhuān)家主張讓機(jī)器“主動(dòng)”學(xué)習(xí),即從樣例中學(xué)習(xí)知識(shí),代表性成果包括決策樹(shù)和BP神經(jīng)網(wǎng)絡(luò),因此稱(chēng)這個(gè)時(shí)期為“學(xué)習(xí)期”。在此期間深度學(xué)習(xí)仍然表現(xiàn)為基于神經(jīng)網(wǎng)絡(luò)的連接主義,而其中BP神經(jīng)網(wǎng)絡(luò)的提出為深度學(xué)習(xí)帶來(lái)了第二次浪潮。其實(shí)在此期間就存在很好的算法,但由于數(shù)據(jù)量以及計(jì)算能力的限制致使這些算法的良好效果并沒(méi)有展現(xiàn)出來(lái)。

第四個(gè)時(shí)期從20世紀(jì)初持續(xù)至21世紀(jì)初,這時(shí)的研究者們開(kāi)始嘗試用統(tǒng)計(jì)的方法分析并預(yù)測(cè)數(shù)據(jù)的分布,因此稱(chēng)這個(gè)時(shí)期為“統(tǒng)計(jì)期”,這個(gè)階段提出了代表性的算法“支持向量機(jī)”,而此時(shí)的深度學(xué)習(xí)仍然停留在第二次浪潮中。

第五個(gè)時(shí)期從20世紀(jì)初持續(xù)至今,神經(jīng)網(wǎng)絡(luò)再一次被機(jī)器學(xué)習(xí)專(zhuān)家重視,2006年Hinton及其學(xué)生Salakhutdinov發(fā)表的論文《Reducing the Dimensionality of Data with Neural Networks》標(biāo)志著深度學(xué)習(xí)的正式復(fù)興,該時(shí)期掀起深度學(xué)習(xí)的第三次浪潮,同時(shí)在機(jī)器學(xué)習(xí)的發(fā)展階段中被稱(chēng)為“深度學(xué)習(xí)”時(shí)期。此時(shí),深度神經(jīng)網(wǎng)絡(luò)已經(jīng)優(yōu)于與之競(jìng)爭(zhēng)的基于其他機(jī)器學(xué)習(xí)的技術(shù)以及手工設(shè)計(jì)功能的AI系統(tǒng)。而在此之后,伴隨著數(shù)據(jù)量的爆炸式增長(zhǎng)與計(jì)算能力的與日俱增,深度學(xué)習(xí)得到了進(jìn)一步的發(fā)展。

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)發(fā)展的漫漫長(zhǎng)路

030284ba-491f-11ed-a3b6-dac502259ad0.png

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:【科普】機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是一回事么?

文章出處:【微信號(hào):Hardware_10W,微信公眾號(hào):硬件十萬(wàn)個(gè)為什么】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在機(jī)器視覺(jué)中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(jué)(乃至生產(chǎn)自動(dòng)化)帶來(lái)的潛力,因?yàn)?b class='flag-5'>深度學(xué)習(xí)并非只屬于計(jì)算機(jī)科學(xué)家或程序員。 從頭開(kāi)始:什么
    的頭像 發(fā)表于 09-10 17:38 ?556次閱讀
    如何在<b class='flag-5'>機(jī)器</b>視覺(jué)中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    使用MATLAB進(jìn)行無(wú)監(jiān)督學(xué)習(xí)

    無(wú)監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機(jī)器學(xué)習(xí)方法。無(wú)監(jiān)督學(xué)習(xí)旨在識(shí)別數(shù)據(jù)中隱藏的模式和關(guān)系,無(wú)需任何監(jiān)督或關(guān)于結(jié)果的先驗(yàn)知識(shí)。
    的頭像 發(fā)表于 05-16 14:48 ?1055次閱讀
    使用MATLAB進(jìn)行無(wú)監(jiān)督<b class='flag-5'>學(xué)習(xí)</b>

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過(guò)程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?1197次閱讀

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡(jiǎn)直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?643次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭(zhēng)形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?745次閱讀

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來(lái)發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?536次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1220次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開(kāi)發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1703次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?638次閱讀

    自然語(yǔ)言處理與機(jī)器學(xué)習(xí)關(guān)系 自然語(yǔ)言處理的基本概念及步驟

    Learning,簡(jiǎn)稱(chēng)ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)或決策。自然語(yǔ)言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)?b class='flag-5'>機(jī)
    的頭像 發(fā)表于 12-05 15:21 ?2421次閱讀

    ASR和機(jī)器學(xué)習(xí)關(guān)系

    自動(dòng)語(yǔ)音識(shí)別(ASR)技術(shù)的發(fā)展一直是人工智能領(lǐng)域的一個(gè)重要分支,它使得機(jī)器能夠理解和處理人類(lèi)語(yǔ)言。隨著機(jī)器學(xué)習(xí)(ML)技術(shù)的迅猛發(fā)展,ASR系統(tǒng)的性能和準(zhǔn)確性得到了顯著提升。 ASR技術(shù)概述 自動(dòng)
    的頭像 發(fā)表于 11-18 15:16 ?1065次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?1408次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專(zhuān)門(mén)為深度學(xué)習(xí)機(jī)
    的頭像 發(fā)表于 11-15 09:19 ?1733次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專(zhuān)門(mén)為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?2627次閱讀

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專(zhuān)用硬件應(yīng)運(yùn)而生,它們通過(guò)
    的頭像 發(fā)表于 11-13 10:39 ?1705次閱讀