亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

常見的電池均衡電路介紹

政飛科技 ? 來源:政飛科技 ? 作者:政飛科技 ? 2021-11-30 11:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在由蓄電池作為儲能單元的系統(tǒng)中,由于蓄電池單體往往容量比較低,不能夠滿足大容量系統(tǒng)的要求,因此需要將蓄電池單體串聯(lián),形成蓄電池組以提高供電電壓和存儲容量,例如在電動汽車、微電網系統(tǒng)等領域大多需要蓄電池串聯(lián)。由于蓄電池單體自身制作工藝等原因,不同單體之間諸如電解液密度、電極等效電阻等都存在著差異,這些差異導致即便串聯(lián)蓄電池組每個單體的充放電電流相同,也會使每個單體的容量產生不同,進而影響整個蓄電池組的工作。最壞的情況,在一個蓄電池組中,有一個單體的剩余容量接近為100%,另一個單體的剩余容量為0,則這個蓄電池組既不能充電也不能放電,完全不能使用。因此對蓄電池容量的均衡是非常重要的,尤其是在大量蓄電池單體串聯(lián)的情況。

常用的均衡電路分為主動和被動均衡,我們通常把能量消耗型均衡叫做被動均衡,而把其他均衡稱為主動均衡,下面詳細介紹。

電阻消耗均衡法-被動均衡法

電阻消耗均衡法是通過與電池單體連接的電阻,將高于其他單體的能量釋放,以達到各單體的均衡,如圖1 所示。每個蓄電池單體通過一個三極管與一個電阻連接,通過控制三極管的導通與關斷實現(xiàn)蓄電池單體對電阻的放電。該種結構控制簡單,放電速度快,可多個單體同時放電。但缺點也很明顯,能量消耗大,只能對單體進行放電不能充電,而且其他蓄電池單體要以最低的單體為標準才能實現(xiàn)均衡,效率低。

1.png

電阻消耗均衡法結構圖

主動均衡的具體實施方案有很多種,從理念上可以再分成削高填低型和并聯(lián)均衡型兩大類。通常被質疑主動均衡影響電池壽命的,特指削高填低這類主動均衡。匯總幾種典型主動均衡電路在下面。

削高填低,就是把已經電壓高的電芯的能量轉移一部分出來,給電壓低的電芯,從而推遲最低單體電壓觸及放電。截止閾值和最高單體電壓觸及充電終止閾值的時間,獲得系統(tǒng)提升充入電量和放出電量的效果。

但是在這個過程中,高電壓單體和低電壓單體都額外的進行了充放。我們都知道,電池的壽命被稱為“循環(huán)壽命”,僅僅就這顆電芯來說,額外的充放負擔會帶來壽命的消耗是一個確定的事,但對電池包系統(tǒng)而言,總體上是延長了系統(tǒng)壽命還是降低了系統(tǒng)壽命,目前還沒有看到明確的實驗數(shù)據(jù)予以證明。

削高填低的均衡,包括電容式均衡,電感式均衡,變壓器式均衡,此三種均衡方式包括充電過程中的均衡以及靜置過程的均衡。

另外還有一種主動均衡,叫做并聯(lián)式均衡,它只在充電過程中發(fā)揮作用。也有人認為應該在車輛運行中,和放電過程的末尾加入均衡,但一般認為系統(tǒng)電流值的波動比較大,如果依然以單體電壓為依據(jù)進行均衡,則很可能出現(xiàn)誤判,影響均衡效果。當然,隨著技術的發(fā)展,能夠通過其他手段直接對SOC進行準確的推算,則根據(jù)SOC進行的均衡,將不會再受到這個問題的困擾。

電容式均衡

設 B1,B3 電池單體分別為組內電壓最高、最低單體。圖中所有開關管為常開,當均衡器發(fā)出均衡指令時,功率開關管 S1、Q2 閉合,此時單體電池 B1 給電容充電,控制功率開關管的占空比控制充電功率和時間,充電結束后,開關管 S3、Q4 閉合,電容給單體電池 B3 充電,此時電池組內不均衡度降低,均衡結束。

2.png

電感式均衡

充電過程中,開關管 S 閉合,充電機給電池組充電。此時電池組右側開關管全部斷開,均衡系統(tǒng)不開啟。設單體電池B1 電壓開始明顯高于其他電池并達到均衡閾值時,此時均衡系統(tǒng)開啟,S1、Q2開關管閉合,電感與單體電池 B1 并聯(lián),起到分流的作用,電感儲存來自充電機與電池 B1 的能量;當 S1、Q2 開關管置 0,Q3、S4 開關管置 1 時,電感給充電過程的單體電池 B3 釋放一定能量。

靜置過程中,開關管 S 斷開,當單體電池 B1 電壓高于其他電池并達到均衡閾值時,均衡系統(tǒng)開啟,S1、Q2 開關管閉合,電感與單體電池 B1 并聯(lián),電感吸收 B1 能量;當 S1、Q2 開關管斷開,Q3、S4 開關管閉合時,電感給單體電池 B3釋放電量。

3.png

變壓器式均衡

基于反激式均衡變壓器進行參數(shù)設計,即變壓器既作為吸收能量源又作為釋放能量源,吸收與釋放能量的轉換在于能量在磁能與電能之間的轉換。

同樣,設單體電池 B1 電壓最高,將 S1、Q2 置 1,其他開關管置 0,此時變壓器作為吸收能量源,能量由 B1 電池給的電能轉換為磁能;S1、Q2 置 0,Q1、S2 置 1,能量由初級繞組傳遞給次級繞組,能量釋放給單體電池 B3,能量由磁能重新轉換為電能。

4.png

并聯(lián)均衡

理想的均衡方式是所有電池能量及端電壓相同,并聯(lián)電池組內單體電池電壓始終相等,因為和連通器原理一樣,兩邊水柱永遠水平,并聯(lián)電池也先天性的單體電壓高的自發(fā)給單體電壓低的電池充電。但串聯(lián)電池組內想要應用此原理,就需要稍微改變原電池組拓撲結構。

并聯(lián)拓撲結構,每節(jié)單體電池都有一個單刀雙擲的開關繼電器,所以 n 節(jié)串聯(lián)電池組內需要 n+1 個繼電器。

控制原理如下:設電池組內 B4 電壓最高,B2 電壓最低,控制繼電器 S5、S3、Q4、Q2 閉合,此時兩節(jié)單體電池并聯(lián),兩單體電池自動均衡,電壓趨于一致。該拓撲的缺點是充電過程中不能進行均衡,只能靜置去極化時候進行并聯(lián)均衡。

5.png

并聯(lián)均衡,總體上就是在充電過程中,分流充電電流,給電壓低的電芯多充電,而電壓高的少充電。于是,不必出現(xiàn)“劫富濟貧”的過程,避免了最高和最低電壓電芯的額外充放電負擔,也就不用懷疑均衡過程對個別電芯壽命的影響拖累系統(tǒng)壽命的問題。

模組之間的均衡

這種形式在實際應用中很少見,但芯片供應商提供的方案藍本中已經出現(xiàn)了相鄰模組可以相互均衡的功能。一種原理圖如下。

6.png

幾種均衡方式的比較

主動均衡的選擇

業(yè)內的經驗總結大致如下:

1)對于10AH以內的電池組,采用能量消耗型可能是比較好的選擇,控制簡單。

2)對于幾十AH的電池組來說,采用一拖多的反激變壓器,結合電池采樣部分來做電池均衡應該是可行的。

3)對于上百AH的電池組來說,可能采用獨立的充電模塊會好一些,因為上百AH的電池,均衡電流都在10多A左右,如果串聯(lián)節(jié)數(shù)再多一些,均衡功率都很大,引線到電池外,采用外部DC-DC或AC-DC均衡也許更安全。

作者:政飛科技 轉載請注明來源


ymf

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    462

    文章

    53290

    瀏覽量

    455747
  • 充電電流
    +關注

    關注

    2

    文章

    59

    瀏覽量

    10940
  • 電池
    +關注

    關注

    84

    文章

    11277

    瀏覽量

    140689
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    IP3267 5-10?節(jié)電池保護 IC

    過壓、欠壓、三段過放電流保護、充電過流保護、斷線檢測保護和電池均衡功能。內置均衡電路,不需要任何外圍元件即可實現(xiàn)電池充放電
    發(fā)表于 10-24 19:59 ?0次下載

    燃料電池負載均衡測試:解鎖高效供能密碼

    在新能源領域蓬勃發(fā)展的當下,燃料電池憑借其清潔、高效的特性脫穎而出。而負載均衡測試作為確保燃料電池穩(wěn)定運行與性能優(yōu)化的關鍵環(huán)節(jié),意義非凡。以下是一套全面且實用的燃料電池負載
    發(fā)表于 09-18 13:51

    電池運維的常見誤區(qū)及解決方法

    和其他工業(yè)與電氣設備一樣,蓄電池也需要定期的維護。但不少工程師對于蓄電池維護項目和方法等還存在一些誤解。今天小福為大家深度剖析蓄電池運維的常見4大維護誤區(qū),助你避開雷區(qū),精準預判
    的頭像 發(fā)表于 09-04 13:58 ?540次閱讀
    蓄<b class='flag-5'>電池</b>運維的<b class='flag-5'>常見</b>誤區(qū)及解決方法

    5.5v 法拉電容 需要均衡嗎?

    本文探討了5.5V法拉電容的電壓均衡問題,并分析了失衡可能導致的性能衰減、熱失控和安全性問題。電容組的均衡技術為解決這些問題提供了解決方案,可有效提高系統(tǒng)的可靠性。此外,文章還介紹了在不同應用場合下,如何選擇適合的電容
    的頭像 發(fā)表于 07-17 09:23 ?588次閱讀
    5.5v 法拉電容 需要<b class='flag-5'>均衡</b>嗎?

    精準監(jiān)測 均衡電池 | 極?;贐MP561的雙串電量計參考方案

    核心是通過電量計芯片實現(xiàn)對電池組剩余電量(SoC)、健康狀態(tài)(SoH)、電壓、電流以及溫度等參數(shù)的精準監(jiān)測和均衡管理,全方位保障電池組的安全、高效、可靠運行。 聚焦于電池系統(tǒng)的關鍵設計
    發(fā)表于 06-24 14:05 ?980次閱讀
     精準監(jiān)測 <b class='flag-5'>均衡</b><b class='flag-5'>電池</b> | 極?;贐MP561的雙串電量計參考方案

    電壓環(huán)路:電池 → 升壓電路 → 降壓電路電池

    因產品需要,設計電路產生了疑難問題。例如:一12v電池接DC-DC升壓電路,電壓升至18v。輸出又接一DC-DC降壓電路,降至12v,輸出又接至電池
    發(fā)表于 06-13 09:16

    提前對失效的電池進行預警及電池均衡管理 安科瑞ABAT100系列蓄電池在線監(jiān)測

    安科瑞公司ABAT100系列蓄電池在線監(jiān)測系統(tǒng)是在線電池監(jiān)測產品,可以提前對失效的電池進行預警及電池均衡,符合ANSI/TIA-942標準要
    的頭像 發(fā)表于 04-29 14:11 ?471次閱讀
    提前對失效的<b class='flag-5'>電池</b>進行預警及<b class='flag-5'>電池</b><b class='flag-5'>均衡</b>管理 安科瑞ABAT100系列蓄<b class='flag-5'>電池</b>在線監(jiān)測

    常見網絡負載均衡的幾種方式

    常見網絡負載均衡的幾種方式包括:DNS負載均衡、反向代理負載均衡、IP負載均衡、應用層負載均衡、
    的頭像 發(fā)表于 03-06 11:14 ?898次閱讀

    FilterBank均衡器插件介紹

    FilterBank是McDSP的第一款產品,是一款均衡器插件,其靈活的設計和豐富的功能集可與任何模擬均衡器相媲美。它可以模擬任何均衡器,也可用于創(chuàng)建獨特的自定義均衡器。 Filter
    的頭像 發(fā)表于 01-17 11:47 ?787次閱讀
    FilterBank<b class='flag-5'>均衡</b>器插件<b class='flag-5'>介紹</b>

    電橋電路常見錯誤分析

    電橋電路常見錯誤分析主要包括以下幾個方面: 一、電阻值不準確 電阻值不準確是電橋電路常見的錯誤之一。這可能是由于電阻本身的誤差,如電阻的標稱值與實際值存在偏差,或者電阻老化、溫度變化
    的頭像 發(fā)表于 01-09 10:08 ?1730次閱讀

    了解圖形均衡器與參數(shù)均衡器的區(qū)別

    在音頻處理領域,均衡器(Equalizer)是一種用于調整音頻信號頻率響應的設備或軟件工具。它可以幫助我們增強或減弱特定頻率范圍的聲音,以達到改善音質、去除噪音或創(chuàng)造特定音效的目的。圖形均衡器和參數(shù)
    的頭像 發(fā)表于 12-26 09:35 ?3435次閱讀

    均衡器與音頻效果器的區(qū)別

    在音頻處理中,均衡器和音頻效果器是兩種常見的設備,它們各自承擔著不同的功能,以滿足不同的音頻處理需求。 均衡器(Equalizer) 均衡器是一種音頻處理設備,用于調整音頻信號中不同頻
    的頭像 發(fā)表于 12-26 09:31 ?3427次閱讀

    常見的lvs負載均衡算法

    常見的lvs負載均衡算法包括輪詢(RR)、加權輪詢(WRR)、最小連接(LC)、加權最小連接(WLC)、基于局部性的最少鏈接(LBLC)、帶復制的LBLC(LBLCR)、目標地址散列(DH)、源地址
    的頭像 發(fā)表于 12-12 13:50 ?819次閱讀

    調試PCIE鏈路動態(tài)均衡介紹

    隨著連續(xù)幾代 PCI Express 以 8 Gbps、16 Gbps 和 32 Gbps 的速度運行,動態(tài)鏈路均衡變得至關重要。均衡會補償通信信道對信號的影響。 這些影響包括充當?shù)屯V波器的鏈路
    的頭像 發(fā)表于 12-05 09:18 ?2675次閱讀
    調試PCIE鏈路動態(tài)<b class='flag-5'>均衡</b><b class='flag-5'>介紹</b>

    nginx負載均衡配置介紹

    目錄 nginx負載均衡 nginx負載均衡介紹 反向代理與負載均衡 nginx負載均衡配置 Keepalived高可用nginx負載
    的頭像 發(fā)表于 11-10 13:39 ?1126次閱讀
    nginx負載<b class='flag-5'>均衡</b>配置<b class='flag-5'>介紹</b>