亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Join在Spark中是如何組織運(yùn)行的

人工智能與大數(shù)據(jù)技術(shù) ? 來(lái)源:人工智能與大數(shù)據(jù)技術(shù) ? 作者:人工智能與大數(shù)據(jù) ? 2020-09-25 11:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Join作為SQL中一個(gè)重要語(yǔ)法特性,幾乎所有稍微復(fù)雜一點(diǎn)的數(shù)據(jù)分析場(chǎng)景都離不開Join,如今Spark SQL(Dataset/DataFrame)已經(jīng)成為Spark應(yīng)用程序開發(fā)的主流,作為開發(fā)者,我們有必要了解Join在Spark中是如何組織運(yùn)行的。

SparkSQL總體流程介紹

在闡述Join實(shí)現(xiàn)之前,我們首先簡(jiǎn)單介紹SparkSQL的總體流程,一般地,我們有兩種方式使用SparkSQL,一種是直接寫sql語(yǔ)句,這個(gè)需要有元數(shù)據(jù)庫(kù)支持,例如Hive等,另一種是通過(guò)Dataset/DataFrame編寫Spark應(yīng)用程序。如下圖所示,sql語(yǔ)句被語(yǔ)法解析(SQL AST)成查詢計(jì)劃,或者我們通過(guò)Dataset/DataFrame提供的APIs組織成查詢計(jì)劃,查詢計(jì)劃分為兩大類:邏輯計(jì)劃和物理計(jì)劃,這個(gè)階段通常叫做邏輯計(jì)劃,經(jīng)過(guò)語(yǔ)法分析(Analyzer)、一系列查詢優(yōu)化(Optimizer)后得到優(yōu)化后的邏輯計(jì)劃,最后被映射成物理計(jì)劃,轉(zhuǎn)換成RDD執(zhí)行。

對(duì)于語(yǔ)法解析、語(yǔ)法分析以及查詢優(yōu)化,本文不做詳細(xì)闡述,本文重點(diǎn)介紹Join的物理執(zhí)行過(guò)程。

Join基本要素

如下圖所示,Join大致包括三個(gè)要素:Join方式、Join條件以及過(guò)濾條件。其中過(guò)濾條件也可以通過(guò)AND語(yǔ)句放在Join條件中。

Spark支持所有類型的Join,包括:

inner join

left outer join

right outer join

full outer join

left semi join

left anti join

下面分別闡述這幾種Join的實(shí)現(xiàn)。

Join基本實(shí)現(xiàn)流程

總體上來(lái)說(shuō),Join的基本實(shí)現(xiàn)流程如下圖所示,Spark將參與Join的兩張表抽象為流式遍歷表(streamIter)和查找表(buildIter),通常streamIter為大表,buildIter為小表,我們不用擔(dān)心哪個(gè)表為streamIter,哪個(gè)表為buildIter,這個(gè)spark會(huì)根據(jù)join語(yǔ)句自動(dòng)幫我們完成。

在實(shí)際計(jì)算時(shí),spark會(huì)基于streamIter來(lái)遍歷,每次取出streamIter中的一條記錄rowA,根據(jù)Join條件計(jì)算keyA,然后根據(jù)該keyA去buildIter中查找所有滿足Join條件(keyB==keyA)的記錄rowBs,并將rowBs中每條記錄分別與rowAjoin得到j(luò)oin后的記錄,最后根據(jù)過(guò)濾條件得到最終join的記錄。

從上述計(jì)算過(guò)程中不難發(fā)現(xiàn),對(duì)于每條來(lái)自streamIter的記錄,都要去buildIter中查找匹配的記錄,所以buildIter一定要是查找性能較優(yōu)的數(shù)據(jù)結(jié)構(gòu)。spark提供了三種join實(shí)現(xiàn):sort merge join、broadcast join以及hash join。

sort merge join實(shí)現(xiàn)

要讓兩條記錄能join到一起,首先需要將具有相同key的記錄在同一個(gè)分區(qū),所以通常來(lái)說(shuō),需要做一次shuffle,map階段根據(jù)join條件確定每條記錄的key,基于該key做shuffle write,將可能join到一起的記錄分到同一個(gè)分區(qū)中,這樣在shuffle read階段就可以將兩個(gè)表中具有相同key的記錄拉到同一個(gè)分區(qū)處理。前面我們也提到,對(duì)于buildIter一定要是查找性能較優(yōu)的數(shù)據(jù)結(jié)構(gòu),通常我們能想到hash表,但是對(duì)于一張較大的表來(lái)說(shuō),不可能將所有記錄全部放到hash表中,另外也可以對(duì)buildIter先排序,查找時(shí)按順序查找,查找代價(jià)也是可以接受的,我們知道,spark shuffle階段天然就支持排序,這個(gè)是非常好實(shí)現(xiàn)的,下面是sort merge join示意圖。

在shuffle read階段,分別對(duì)streamIter和buildIter進(jìn)行merge sort,在遍歷streamIter時(shí),對(duì)于每條記錄,都采用順序查找的方式從buildIter查找對(duì)應(yīng)的記錄,由于兩個(gè)表都是排序的,每次處理完streamIter的一條記錄后,對(duì)于streamIter的下一條記錄,只需從buildIter中上一次查找結(jié)束的位置開始查找,所以說(shuō)每次在buildIter中查找不必重頭開始,整體上來(lái)說(shuō),查找性能還是較優(yōu)的。

broadcast join實(shí)現(xiàn)

為了能具有相同key的記錄分到同一個(gè)分區(qū),我們通常是做shuffle,那么如果buildIter是一個(gè)非常小的表,那么其實(shí)就沒(méi)有必要大動(dòng)干戈做shuffle了,直接將buildIter廣播到每個(gè)計(jì)算節(jié)點(diǎn),然后將buildIter放到hash表中,如下圖所示。

從上圖可以看到,不用做shuffle,可以直接在一個(gè)map中完成,通常這種join也稱之為map join。那么問(wèn)題來(lái)了,什么時(shí)候會(huì)用broadcast join實(shí)現(xiàn)呢?這個(gè)不用我們擔(dān)心,spark sql自動(dòng)幫我們完成,當(dāng)buildIter的估計(jì)大小不超過(guò)參數(shù)spark.sql.autoBroadcastJoinThreshold設(shè)定的值(默認(rèn)10M),那么就會(huì)自動(dòng)采用broadcast join,否則采用sort merge join。

hash join實(shí)現(xiàn)

除了上面兩種join實(shí)現(xiàn)方式外,spark還提供了hash join實(shí)現(xiàn)方式,在shuffle read階段不對(duì)記錄排序,反正來(lái)自兩格表的具有相同key的記錄會(huì)在同一個(gè)分區(qū),只是在分區(qū)內(nèi)不排序,將來(lái)自buildIter的記錄放到hash表中,以便查找,如下圖所示。

不難發(fā)現(xiàn),要將來(lái)自buildIter的記錄放到hash表中,那么每個(gè)分區(qū)來(lái)自buildIter的記錄不能太大,否則就存不下,默認(rèn)情況下hash join的實(shí)現(xiàn)是關(guān)閉狀態(tài),如果要使用hash join,必須滿足以下四個(gè)條件:

buildIter總體估計(jì)大小超過(guò)spark.sql.autoBroadcastJoinThreshold設(shè)定的值,即不滿足broadcast join條件

開啟嘗試使用hash join的開關(guān),spark.sql.join.preferSortMergeJoin=false

每個(gè)分區(qū)的平均大小不超過(guò)spark.sql.autoBroadcastJoinThreshold設(shè)定的值,即shuffle read階段每個(gè)分區(qū)來(lái)自buildIter的記錄要能放到內(nèi)存中

streamIter的大小是buildIter三倍以上

所以說(shuō),使用hash join的條件其實(shí)是很苛刻的,在大多數(shù)實(shí)際場(chǎng)景中,即使能使用hash join,但是使用sort merge join也不會(huì)比hash join差很多,所以盡量使用hash

下面我們分別闡述不同Join方式的實(shí)現(xiàn)流程。

inner join

inner join是一定要找到左右表中滿足join條件的記錄,我們?cè)趯憇ql語(yǔ)句或者使用DataFrame時(shí),可以不用關(guān)心哪個(gè)是左表,哪個(gè)是右表,在spark sql查詢優(yōu)化階段,spark會(huì)自動(dòng)將大表設(shè)為左表,即streamIter,將小表設(shè)為右表,即buildIter。這樣對(duì)小表的查找相對(duì)更優(yōu)。其基本實(shí)現(xiàn)流程如下圖所示,在查找階段,如果右表不存在滿足join條件的記錄,則跳過(guò)。

left outer join

left outer join是以左表為準(zhǔn),在右表中查找匹配的記錄,如果查找失敗,則返回一個(gè)所有字段都為null的記錄。我們?cè)趯憇ql語(yǔ)句或者使用DataFrmae時(shí),一般讓大表在左邊,小表在右邊。其基本實(shí)現(xiàn)流程如下圖所示。

right outer join

right outer join是以右表為準(zhǔn),在左表中查找匹配的記錄,如果查找失敗,則返回一個(gè)所有字段都為null的記錄。所以說(shuō),右表是streamIter,左表是buildIter,我們?cè)趯憇ql語(yǔ)句或者使用DataFrame時(shí),一般讓大表在右邊,小表在左邊。其基本實(shí)現(xiàn)流程如下圖所示。

full outer join

full outer join相對(duì)來(lái)說(shuō)要復(fù)雜一點(diǎn),總體上來(lái)看既要做left outer join,又要做right outer join,但是又不能簡(jiǎn)單地先left outer join,再right outer join,最后union得到最終結(jié)果,因?yàn)檫@樣最終結(jié)果中就存在兩份inner join的結(jié)果了。因?yàn)榧热煌瓿蒷eft outer join又要完成right outer join,所以full outer join僅采用sort merge join實(shí)現(xiàn),左邊和右表既要作為streamIter,又要作為buildIter,其基本實(shí)現(xiàn)流程如下圖所示。

由于左表和右表已經(jīng)排好序,首先分別順序取出左表和右表中的一條記錄,比較key,如果key相等,則joinrowA和rowB,并將rowA和rowB分別更新到左表和右表的下一條記錄;如果keyAkeyB,則說(shuō)明左表中沒(méi)有與右表rowB對(duì)應(yīng)的記錄,那么joinnullRow與rowB,緊接著,rowB更新到右表的下一條記錄。如此循環(huán)遍歷直到左表和右表的記錄全部處理完。

left semi join

left semi join是以左表為準(zhǔn),在右表中查找匹配的記錄,如果查找成功,則僅返回左邊的記錄,否則返回null,其基本實(shí)現(xiàn)流程如下圖所示。

left anti join

left anti join與left semi join相反,是以左表為準(zhǔn),在右表中查找匹配的記錄,如果查找成功,則返回null,否則僅返回左邊的記錄,其基本實(shí)現(xiàn)流程如下圖所示。

總結(jié)

Join是數(shù)據(jù)庫(kù)查詢中一個(gè)非常重要的語(yǔ)法特性,在數(shù)據(jù)庫(kù)領(lǐng)域可以說(shuō)是“得join者得天下”,SparkSQL作為一種分布式數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng),給我們提供了全面的join支持,并在內(nèi)部實(shí)現(xiàn)上無(wú)聲無(wú)息地做了很多優(yōu)化,了解join的實(shí)現(xiàn)將有助于我們更深刻的了解我們的應(yīng)用程序的運(yùn)行軌跡。

責(zé)任編輯:xj

原文標(biāo)題:面試必知的 Spark SQL 幾種 Join 實(shí)現(xiàn)

文章出處:【微信公眾號(hào):人工智能與大數(shù)據(jù)技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • SQL
    SQL
    +關(guān)注

    關(guān)注

    1

    文章

    789

    瀏覽量

    46197
  • SPARK
    +關(guān)注

    關(guān)注

    1

    文章

    106

    瀏覽量

    21036

原文標(biāo)題:面試必知的 Spark SQL 幾種 Join 實(shí)現(xiàn)

文章出處:【微信號(hào):TheBigData1024,微信公眾號(hào):人工智能與大數(shù)據(jù)技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NVIDIA DGX Spark新一代AI超級(jí)計(jì)算機(jī)正式交付

    NVIDIA 創(chuàng)始人兼首席執(zhí)行官黃仁勛 SpaceX 向埃隆·馬斯克交付 DGX Spark。
    的頭像 發(fā)表于 10-21 10:41 ?369次閱讀

    角位移傳感器機(jī)加工設(shè)備的應(yīng)用:保障加工過(guò)程精準(zhǔn)高效運(yùn)行

    現(xiàn)代 機(jī)加工 領(lǐng)域,隨著制造業(yè)朝著高精度、高效率、智能化方向發(fā)展,機(jī)加工設(shè)備的性能和精度面臨著前所未有的挑戰(zhàn)。從精密零件的加工到大型機(jī)械部件的制造,每一個(gè)環(huán)節(jié)都對(duì)設(shè)備的 運(yùn)行精度和穩(wěn)定性 提出
    的頭像 發(fā)表于 10-09 10:24 ?25次閱讀
    角位移傳感器<b class='flag-5'>在</b>機(jī)加工設(shè)備<b class='flag-5'>中</b>的應(yīng)用:保障加工過(guò)程精準(zhǔn)高效<b class='flag-5'>運(yùn)行</b>

    NVIDIA DGX Spark桌面AI計(jì)算機(jī)開啟預(yù)訂

    DGX Spark 現(xiàn)已開啟預(yù)訂!麗臺(tái)科技作為 NVIDIA 授權(quán)分銷商,提供從產(chǎn)品到服務(wù)的一站式解決方案,助力輕松部署桌面 AI 計(jì)算機(jī)。
    的頭像 發(fā)表于 09-23 17:20 ?754次閱讀
    NVIDIA DGX <b class='flag-5'>Spark</b>桌面AI計(jì)算機(jī)開啟預(yù)訂

    eFUSE內(nèi)存是如何組織的?

    目前,我正在研究TRAVEO? 2G - CYT4EN。 我想了解一些與 eFUSE 相關(guān)的主題。 1. eFUSE 是控制器訪問(wèn)的物理芯片還是 SOC 的一部分? 2. eFUSE內(nèi)存是如何組織
    發(fā)表于 07-30 07:07

    使用NVIDIA GPU加速Apache SparkParquet數(shù)據(jù)掃描

    的方式組織數(shù)據(jù),這使得 Parquet 查詢時(shí)僅讀取所需的列,而無(wú)需掃描整行數(shù)據(jù),即可實(shí)現(xiàn)高性能的查詢和分析。高效的數(shù)據(jù)布局使 Parquet 現(xiàn)代分析生態(tài)系統(tǒng)成為了受歡迎的選擇
    的頭像 發(fā)表于 07-23 10:52 ?528次閱讀
    使用NVIDIA GPU加速Apache <b class='flag-5'>Spark</b><b class='flag-5'>中</b>Parquet數(shù)據(jù)掃描

    微型導(dǎo)軌3D打印設(shè)備如何穩(wěn)定運(yùn)行?

    微型導(dǎo)軌憑借其獨(dú)特優(yōu)勢(shì),逐漸成為3D打印設(shè)備不可或缺的關(guān)鍵部件,為設(shè)備的穩(wěn)定運(yùn)行與精準(zhǔn)成型提供著有力支撐。
    的頭像 發(fā)表于 07-14 18:00 ?321次閱讀
    微型導(dǎo)軌<b class='flag-5'>在</b>3D打印設(shè)備<b class='flag-5'>中</b>如何穩(wěn)定<b class='flag-5'>運(yùn)行</b>?

    組織塊使用說(shuō)明

    電子發(fā)燒友網(wǎng)站提供《組織塊使用說(shuō)明.pdf》資料免費(fèi)下載
    發(fā)表于 04-02 15:29 ?0次下載

    NVIDIA加速的Apache Spark助力企業(yè)節(jié)省大量成本

    隨著 NVIDIA 推出 Aether 項(xiàng)目,通過(guò)采用 NVIDIA 加速的 Apache Spark 企業(yè)得以自動(dòng)加速其數(shù)據(jù)中心規(guī)模的分析工作負(fù)載,從而節(jié)省數(shù)百萬(wàn)美元。
    的頭像 發(fā)表于 03-25 15:09 ?809次閱讀
    NVIDIA加速的Apache <b class='flag-5'>Spark</b>助力企業(yè)節(jié)省大量成本

    NVIDIA 宣布推出 DGX Spark 個(gè)人 AI 計(jì)算機(jī)

    的 DGX? 個(gè)人 AI 超級(jí)計(jì)算機(jī)。 ? DGX Spark(前身為 Project DIGITS)支持 AI 開發(fā)者、研究人員、數(shù)據(jù)科學(xué)家和學(xué)生,在臺(tái)式電腦上對(duì)大模型進(jìn)行原型設(shè)計(jì)、微調(diào)和推理。用
    發(fā)表于 03-19 09:59 ?440次閱讀
       NVIDIA 宣布推出 DGX <b class='flag-5'>Spark</b> 個(gè)人 AI 計(jì)算機(jī)

    TouchFX Designer運(yùn)行工程,提示頭文件找不到,為什么?

    TouchFX Designer 運(yùn)行工程,提示頭文件找不到。 但是keil是可以編譯通過(guò)的。 請(qǐng)問(wèn)如何添加編譯的頭文件到設(shè)計(jì)器
    發(fā)表于 03-13 08:20

    OpenVINO?運(yùn)行應(yīng)用程序失敗怎么解決?

    嘗試 OpenVINO? 運(yùn)行我的推理應(yīng)用程序失敗,并出現(xiàn)以下錯(cuò)誤: RuntimeError: Check \'false\' failed at src/core/src/runtime/ov_tensor.cpp:67
    發(fā)表于 03-05 10:29

    Visual Studio運(yùn)行Hello分類樣本 ,僅在Visual Studio輸出收到錯(cuò)誤消息,怎么解決?

    Visual Studio* 運(yùn)行 Hello 分類樣本 ,僅在 Visual Studio* 輸出收到錯(cuò)誤消息: Exception thrown
    發(fā)表于 03-05 08:16

    DLP2010無(wú)法64位程序運(yùn)行怎么處理?

    有沒(méi)有64位的cyusbserial.dll,官方demo中都是32位的庫(kù),無(wú)法64位程序運(yùn)行
    發(fā)表于 02-17 07:57

    如何降低顛轉(zhuǎn)儀在運(yùn)行過(guò)程的能耗

    要降低顛轉(zhuǎn)儀在運(yùn)行過(guò)程的能耗,可從電機(jī)選型、傳動(dòng)系統(tǒng)優(yōu)化以及控制系統(tǒng)設(shè)計(jì)這幾個(gè)關(guān)鍵維度入手。 電機(jī)選型方面,永磁同步電機(jī)是極具優(yōu)勢(shì)的選擇。相較于普通異步電機(jī),永磁同步電機(jī)的效率明顯更高。這主要
    的頭像 發(fā)表于 02-13 09:26 ?503次閱讀
    如何降低顛轉(zhuǎn)儀在<b class='flag-5'>運(yùn)行</b>過(guò)程<b class='flag-5'>中</b>的能耗

    車時(shí)代電氣列車自主運(yùn)行系統(tǒng)通過(guò)行業(yè)評(píng)審

    近日,中國(guó)城市軌道交通協(xié)會(huì)技術(shù)裝備專業(yè)委員會(huì)在寧波組織公司列車自主運(yùn)行系統(tǒng)(tSafer-UC4000)現(xiàn)場(chǎng)試驗(yàn)驗(yàn)證評(píng)審會(huì)。
    的頭像 發(fā)表于 01-15 13:44 ?959次閱讀