亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費(fèi)注冊(cè)]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

基于K近鄰特征選擇算法的對(duì)比分析

大?。?/span>0.61 MB 人氣: 2017-11-06 需要積分:0

  KNN算法的主要分為3步:首先,計(jì)算待分類樣本與已知類別的訓(xùn)練樣本之間的距離或相似度,找到與待分類樣本最近的k個(gè)樣本,稱之為待分類樣本的k個(gè)近鄰:其次,根據(jù)這些樣本所屬的類別來判斷待分類樣本的類別,如果待分類樣本的k個(gè)近鄰都屬于同一個(gè)類別,那么待分類樣本也屬于該類別:否則的話,對(duì)每一個(gè)候選類別進(jìn)行評(píng)分,按照一定的規(guī)則來確定待分類樣本的類別。

  K近鄰算法中的分類決策規(guī)則往往遵循多數(shù)表決,多數(shù)表決是指由待分類樣本的k個(gè)近鄰(訓(xùn)練樣本)所得到的多數(shù)類別來決定輸入樣本的類別。盡管K近鄰算法可以在一定程度上有效地判斷出待分類樣本的類別,但其結(jié)果往往也伴隨著誤差,這樣的誤差文中稱為近鄰錯(cuò)誤分類率。

基于K近鄰特征選擇算法的對(duì)比分析

非常好我支持^.^

(0) 0%

不好我反對(duì)

(0) 0%

      發(fā)表評(píng)論

      用戶評(píng)論
      評(píng)價(jià):好評(píng)中評(píng)差評(píng)

      發(fā)表評(píng)論,獲取積分! 請(qǐng)遵守相關(guān)規(guī)定!

      ?