尺寸變小,成本要求提高,電路板層數(shù)變少,使得布線密度越來越大,串擾的問題也就越發(fā)嚴重。本文從3W規(guī)則,串擾理論,仿真驗證幾個方面對真實世界中的串擾控制進行量化分析。關鍵詞:3W,串擾理論,仿真驗證,量化分析
2014-10-21 09:53:31
影響非常大,要特別注意。以上的結論為一個量化估值,具體情況需要具體分析,不同信號對于串擾的敏感程度不一樣,實際的上升時間也需要根據(jù)模型來定,除了靠經(jīng)驗之外,仿真也能幫助我們更精確的判斷串擾。
2014-10-21 09:52:58
初始狀態(tài),仿真器計算所有默認侵害網(wǎng)絡對每一個受害網(wǎng)絡的串擾的總和。這種方式一般只對個別關鍵網(wǎng)絡進行分析,因為要計算的組合太多,仿真速度比較慢。
2009-03-20 14:04:47
將受害網(wǎng)絡的驅(qū)動器保持初始狀態(tài),仿真器計算所有默認侵害網(wǎng)絡對每一個受害網(wǎng)絡的串擾的總和。 這種方式一般只對個別關鍵網(wǎng)絡進行分析,因為要計算的組合太多,仿真速度比較慢。
2018-08-29 10:28:17
分析是指將受害網(wǎng)絡的驅(qū)動器保持初始狀態(tài),仿真器計算所有默認侵害網(wǎng)絡對每一個受害網(wǎng)絡的串擾的總和。 這種方式一般只對個別關鍵網(wǎng)絡進行分析,因為要計算的組合太多,仿真速度比較慢。
2020-06-13 11:59:57
7.6 串擾仿真 7.7 串擾分析 7.8 同時開關噪聲SSN仿真 7.9 SSN波形分析 7.10 系統(tǒng)級分析
2009-07-10 13:14:18
了各自的見解,比如串擾,繞線,過孔,跨分割等等。本期我們就以不同模態(tài)下的串擾對信號時延的影響繼續(xù)通過理論分析和仿真驗證的方式跟大家一起進行探討。在開始仿真之前我們先簡單的了解一下什么是串擾以及串擾
2023-01-10 14:13:01
完整性與電磁兼容性測試。主要特色:●支持各種傳輸線的阻抗規(guī)劃和計算●支持反射 / 串擾 / 損耗 / 過孔效應及 EMC 分析●通過匹配向?qū)?b class="flag-6" style="color: red">高速網(wǎng)絡提供串行、并行及差分匹配方案●支持多板分析,可對板間
2018-02-13 13:57:12
繼上一篇“差模(常模)噪聲與共模噪聲”之后,本文將對“串擾”進行介紹。串擾串擾是由于線路之間的耦合引發(fā)的信號和噪聲等的傳播,也稱為“串音干擾”。特別是“串音”在模擬通訊時代是字如其意、一目了然的表達
2019-03-21 06:20:15
什么是串擾?互感和互容電感和電容矩陣串擾引起的噪聲
2021-02-05 07:18:27
航空通信系統(tǒng)變得日益復雜,我們通常需要在同一架飛機上安裝多條天線,這樣可能會在天線間造成串擾,或稱同址干擾,影響飛機運行。在本教程模型中,我們利用COMSOL Multiphysics 5.1 版本模擬了飛機機身上兩個完全相同的天線之間的干擾,其中一個負責發(fā)射,另一個負責接收,以此來分析串擾的影響。
2019-08-26 06:36:54
。對于8Gbps及以上的高速應用更應該注意避免此類問題,為高速數(shù)字傳輸鏈路提供更多裕量。本文針對PCB設計中由小間距QFN封裝引入串擾的抑制方法進行了仿真分析,為此類設計提供參考。那么,什么是小間距QFN封裝PCB設計串擾抑制呢?
2019-07-30 08:03:48
數(shù)百毫伏的差分幅度。入侵(aggressor)信號與受害(victim)信號出現(xiàn)能量耦合時會產(chǎn)生串擾,表現(xiàn)為電場或磁場干擾。電場通過信號間的互電容耦合,磁場則通過互感耦合。方程式(1)和(2)分別是入侵信號
2019-05-28 08:00:02
領域的工程師離不開它,近些年來,高速信號完整性領域也越來越多的工程師喜歡上了這款“不要不要”的軟件。鑒于國內(nèi)外的很多ADS的資料都是微波射頻領域的,接下來,我們會慢慢的分享一些ADS在信號完整性領域經(jīng)常使用的小功能和技巧。今天給大家介紹使用ADS進行串擾的仿真。
2019-06-28 08:09:46
間耦合以及繞線方式等有關。隨著PCB走線信號速率越來越高,對時序要求較高的源同步信號的時序裕量越來越少,因此在PCB設計階段準確知道PCB走線對信號時延的影響變的尤為重要。本文基于仿真分析DK,串擾,過孔
2015-01-05 11:02:57
驗證(五)DDR案例分析和實習1. DDR技術介紹 2. DDR設計實例講解 3. DDR,DDR2和DDR3技術對比分析(六) SI/PI仿真軟件介紹常見SI分析軟件的特點和應用(七)GHz高速差分信
2011-04-13 11:32:28
驗證(五)DDR案例分析和實習1. DDR技術介紹 2. DDR設計實例講解 3. DDR,DDR2和DDR3技術對比分析(六) SI/PI仿真軟件介紹常見SI分析軟件的特點和應用(七)GHz高速差分信
2011-04-21 09:54:28
) SI/PI仿真軟件介紹常見SI分析軟件的特點和應用(七)GHz高速差分信號的設計技巧1. GHz高速差分信號技術現(xiàn)狀和發(fā)展趨勢2. 高速差分信號的仿真技術:S參數(shù)的解讀和AMI模型3. GHz高速差
2011-04-13 11:36:50
和上面仿真波形的50ps來比,真的是很微不足道。實際上串擾在DDR模塊里的確會有更為嚴重的影響,試想一下,我們在高速串行信號里面5mV的串擾都覺得非常大了,在DDR模塊里居然能有上百mV。當然兩者還是有
2019-09-05 11:01:14
器,即便如此,在建模時通常也只考慮最臨近的傳輸線線路之間的串擾,相對整個PCB板進行仿真分析顯然是不現(xiàn)實的。3.串擾引起的噪聲如下圖所示,如果在傳輸線1中注入信號,那么在相鄰的傳輸線上會產(chǎn)生由互感與互容
2016-10-10 18:00:41
> 2S 以最小化串擾;2.在信號離開器件后,盡可能的靠近兩條差分信號對,最小化信號反射;3.在兩條差分信號對的整個走線過程中保持恒定的距離;4.保持兩條差分信號對的走線長度一致,最小化偏斜
2018-09-21 10:28:30
變小,布線密度加大等都使得
串擾在
高速PCB設計中的影響顯著增加。
串擾問題是客觀存在,但超過一定的界限可能引起電路的誤觸發(fā),導致系統(tǒng)無法正常工作。設計者必須了解
串擾產(chǎn)生的機理,并且在設計中應用恰當?shù)姆椒?/div>
2018-09-11 15:07:52
系統(tǒng)中某一端口輸出和另一端口輸入之間的比較。在傳輸線結構中,S參數(shù)中的有些參量表示的就是傳輸線到傳輸線之間串擾的直接測量結果。在差分對中也是可以直接測量的。
2019-07-08 08:19:27
中,采用Cadence軟件的高速仿真工具SPECCTRAQuest,并利用器件的 IBIS模型來分析信號完整性,對阻抗匹配以及拓撲結構進行優(yōu)化設計,以保證系統(tǒng)正常工作。本文只對信號反射和串擾進行詳細
2015-01-07 11:30:40
操作時存儲陣列中單元之間的串擾,提高了可靠性。 圖1 脈沖產(chǎn)生電路波形圖 在sram芯片存儲陣列的設計中,經(jīng)常會出現(xiàn)串擾問題發(fā)生,只需要利用行地址的變化來生成充電脈沖的電路。仿真結果表明,該電路功能
2020-05-20 15:24:34
在嵌入式系統(tǒng)硬件設計中,串擾是硬件工程師必須面對的問題。特別是在高速數(shù)字電路中,由于信號沿時間短、布線密度大、信號完整性差,串擾的問題也就更為突出。設計者必須了解串擾產(chǎn)生的原理,并且在設計時應用恰當?shù)姆椒?,?b class="flag-6" style="color: red">串擾產(chǎn)生的負面影響降到最小。
2019-11-05 08:07:57
。對于8Gbps及以上的高速應用更應該注意避免此類問題,為高速數(shù)字傳輸鏈路提供更多裕量。本文針對PCB設計中由小間距QFN封裝引入串擾的抑制方法進行了仿真分析,為此類設計提供參考。二、問題分析在PCB設計
2018-09-11 11:50:13
8Gbps及以上的高速應用更應該注意避免此類問題,為高速數(shù)字傳輸鏈路提供更多裕量。本文針對PCB設計中由小間距QFN封裝引入串擾的抑制方法進行了仿真分析,為此類設計提供參考。
2021-03-01 11:45:56
這些變量的影響量化出來,從而根據(jù)這些變量計算出一個過孔的阻抗。感覺在缺少仿真的情況下也能大概得到過孔的阻抗了!的確,有一些軟件能大概量化出單個過孔的阻抗。但是如果是下面的差分過孔呢?除了單端過孔
2021-11-18 17:04:51
中時鐘的諧波分量與這些諧波頻率上EMI最大值之間的關系。不過,對數(shù)字信號邊沿(從信號電平的10%上升到90%所用的時間)進行時域測量也是測量與分析串擾的一種手段,而且時域測量還有以下優(yōu)點:數(shù)字信號邊沿
2018-11-27 10:00:09
顯示的是時鐘線網(wǎng)的拓撲結構,信號和芯片的位置)。具體的后串擾仿真同時也顯示時鐘線和信號線之間的耦合是很小的。但是噪聲是從哪里來的呢? 由于噪聲總是在驅(qū)動瞬時開關輸出( SSO)時產(chǎn)生的,所以對電源
2021-10-31 08:30:00
矢量網(wǎng)絡分析儀串擾如何測試,設備如何設置
2023-04-09 17:13:25
信號耦合所產(chǎn)生的一種不受歡迎的能量值。根據(jù)麥克斯韋定律,只要有電流的存在,就會有磁場存在,磁場之間的干擾就是串擾的來源。這個感應信號可能會導致數(shù)據(jù)傳輸?shù)膩G失和傳輸錯誤。所以使用雙絞線來傳輸數(shù)據(jù),串擾
2018-01-19 11:15:04
在PCB電路設計中有很多知識技巧,之前我們講過高速PCB如何布局,以及電路板設計最常用的軟件等問題,本文我們講一下關于怎么解決PCB設計中消除串擾的問題,快跟隨小編一起趕緊學習下。 串擾是指在一根
2020-11-02 09:19:31
是SAR型 18位單通道全差分輸入的ADC。ADC的后端是MCU,MCU將數(shù)字信號處理之后再畫到顯示屏上顯示實時波形。 調(diào)試發(fā)現(xiàn)顯示的信號有串擾,表現(xiàn)為某一路信號懸空之后,相鄰的那一路信號上就會出現(xiàn)噪聲。將采樣的時間延長也無法消除串擾。想請教一下各路專家,造成串擾的原因和如何消除串擾,謝謝。
2019-05-14 14:17:00
高頻數(shù)字信號串擾的產(chǎn)生及變化趨勢串擾導致的影響是什么怎么解決高速高密度電路設計中的串擾問題?
2021-04-27 06:13:27
作者:一博科技高速先生成員黃剛過孔在高速領域可謂讓硬件工程師,PCB設計工程師甚至仿真工程師都聞風喪膽,首先是因為它的阻抗沒法像傳輸線一樣,通過一些阻抗計算軟件來得到,一般來說只能通過3D仿真來確定
2023-02-13 14:48:11
。對于8Gbps及以上的高速應用更應該注意避免此類問題,為高速數(shù)字傳輸鏈路提供更多裕量。本文針對PCB設計中由小間距QFN封裝引入串擾的抑制方法進行了仿真分析,為此類設計提供參考。二、問題分析在PCB設計
2022-11-21 06:14:06
分析了過孔的等效模型以及其長度、直徑變化對高頻信號的影響,采用Ansoft HFSS對其仿真驗證,提出在高速PCB設計中具有指導作用的建議。
2012-01-16 16:24:13
56 高速差分信號傳輸中也存在著信號完整性問題。差分過孔在頻率很高的時候會明顯地影響差分信號的完整性, 現(xiàn)介紹差分過孔的等效RLC 模型, 在HFSS 中建立了差分過孔仿真模型并分析了過
2012-01-16 16:31:37
55 在一個高速印刷電路板 (PCB) 中,通孔在降低信號完整性性能方面一直飽受詬病。然而,過孔的使用是不可避免的。在標準的電路板上,元器件被放置在頂層,而差分對的走線在內(nèi)層。內(nèi)層的電磁輻射和對與對之間
2017-10-27 17:52:48
4 PCB allegro中如何替換部分過孔,或全局的過孔。在PCB allegro設計中,如果一不留意,就把過孔打錯了,或打大小,這時,我們要PCB中的某一部過孔進行替換:更多設計內(nèi)容在小北PCB設計
2018-08-07 00:49:44
1661 PCB?allegro中如何替換部分過孔,或全局的過孔。在PCB allegro設計中,如果一不留意,就把過孔打錯了,或打大小,這時,我們要PCB中的某一部過孔進行替換:下面為大家介紹下在沒有
2018-08-07 00:52:03
888 過孔是鍍在電路板頂層與底層之間的通孔外的金屬圓柱體。信號過孔連接不同層上的傳輸線。過孔殘樁是過孔上未使用的部分。過孔焊盤是圓環(huán)狀墊片,它們將過孔連接至頂部或內(nèi)部傳輸線。隔離盤是每個電源或接地層內(nèi)的環(huán)形空隙,以防止到電源和接地層的短路。
2019-05-14 14:46:48
2453 
通過對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過孔往往也會給電路的設計帶來很大的負面效應。
2020-03-13 17:24:52
1582 對于板厚較厚的PCB來說,板厚有可能達到2.4mm或者3mm。以3mm的單板為例,此時一個通孔在PCB上Z方向的長度可以達到將近118mil。如果PCB上有0.8mm pitch的BGA的話,BGA器件的扇出過孔間距只有大約31.5mil。
2019-11-21 16:05:48
1722 電子發(fā)燒友網(wǎng)為你提供實例分析:高速差分過孔之間的串擾資料下載的電子資料下載,更有其他相關的電路圖、源代碼、課件教程、中文資料、英文資料、參考設計、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-04-04 08:55:27
11 在硬件系統(tǒng)設計中,通常我們關注的串擾主要發(fā)生在連接器、芯片封裝和間距比較近的平行走線之間。但在某些設計中,高速差分過孔之間也會產(chǎn)生較大的串擾,本文對高速差分過孔之間的產(chǎn)生串擾的情況提供了實例仿真分析和解決方法。
2022-11-07 11:20:35
1018 假設差分端口D1—D4是芯片的接收端,我們通過觀察D5、D7、D8端口對D2端口的遠端串擾來分析相鄰通道的串擾情況。
2022-11-11 12:28:19
492 通過上面對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過孔往往也會給電路的設計帶來很大的負面效應。
2023-01-29 15:23:55
775 在高速電路設計中,過孔可以說貫穿著設計的始終。而對于高速PCB設計而言,過孔的設計是非常復雜的,通常需要通過仿真來確定過孔的結構和尺寸。
2023-06-19 10:33:08
570 
通過上面對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過孔往往也會給電路的設計帶來很大的負面效應。
2023-08-01 09:48:17
560 
評論